
1

University of California, Berkeley

College of Engineering

Computer Science Division  EECS

Fall 1999 John Kubiatowicz

Midterm I
October 6, 1999

CS152 Computer Architecture and Engineering

Your Name:

SID Number:

Discussion Section:

Problem Possible Score

1 20

2 15

3 35

4 30

Total

2

Problem 1: Performance

Problem 1a:
Name the three principle components of runtime that we discussed in class. How do they
combine to yield runtime?

Problem 1b:
What is Amdahl’s law for speedup? State as a formula which includes a factor for clock rate.

Let us suppose that you have been running an important program on your company’s 300MHz
Acme II processor. By running a detailed simulator, you were able to collect the following
instruction mix and breakdown of costs for ezach instruction type:

Instruction Class Frequency (%) Cycles
Integer arithmetic and logical 40 1

Load 20 1
Store 10 2

Branches 20 3
Floating Point 10 5

Problem 1c:
What is the CPI and MIPS rating of the Acme II for this program?

Problem 1d:
Suppose that you turn on the optimizer and it eliminates 30% of the arithmetic/logic instructions
(i.e. 12% of the total instructions), 30% of load instructions, and 20% of the floating-point
instructions. None of the other instructions are effected. What is the speedup of the optimized
program? (Be sure to state the formula that you are using for speedup and show your work)

3

Problem 1e:
What is the CPI and MIPS rating with the optimized version of the program? Compare your
result to that of (1c) and explain the difference:

Problem 1f:
Now, suppose that the Acme III has just been introduced with a faster clock rate (450 MHz).
However, in order to make the clock rate faster, the Acme engineers had to increase the CPI for
arithmetic, logical, and load instructions to 2 cycles and floating point instructions to 6 cycles.
What is the speedup of the Acme III over the Acme II on the unoptimized program? Show work

Problem 1g:
The engineers for Acme Inc are currently working on the Acme IV. Instead of increasing the
clock rate again, they are working on reducing the time for the floating-point instructions. Use
Amdahl’s law to show the maximum speedup that you could expect between the Acme III and
Acme IV on the unoptimized program (if the clock rates are both 450 MHz)?

4

Problem 2: Propagation Delay

Problem 2a:
Assume the following characteristics for NAND gates:

Input load: 150fF,
Internal delay: TPlh=0.2ns, TPhl=0.5ns,
Load-Dependent delay: TPlhf=.0020ns, TPhlf=.0021ns

For the circuit below, assume that inputs X0 – X5 are all set to 1. What are the propagation
delays from A to Y (for rising and falling-edges of Y)?

X0

A

X1

Y

Z

X2 X3 X4 X5

5

Problem 2b:
Suppose that we construct a new gate, XOR, as follows:

Compute the standard parameters for the linear delay models for this complex gate, assuming the
parameters given above for the NAND gate:

A Input Capacitance: Load-dependent Delays:
B Input Capacitance: TPAYlhf:

TPAYhlf:
TPBYlhf:
TPBYhlf:

Internal delays for A⇒ Y, assuming that B is set to 1 (worst case delays):
TPAYlh:
TPAYhl:

Problem 2c:
Now, suppose we use our new XOR gate in the circuit below. Let X0 – X5 be set to 1.
Compute the propagation delays from A ⇒ Y (both rising and falling edges):

A
B

Y

X0

A

X1

Y

Z

X2 X3 X4 X5

6

Problem 3: Square Root
Suppose that you have a 32-bit value, M, and you wish to find the closest integer, S, less than its

square-root, M . Let’s call S the “integer square root of M”. Since you are forcing S to be an
integer, you will end up with a remainder, R = M – S2. In this problem, we will come up with an
iterative mechanism to compute S one bit at a time.

Let us suppose that we have an estimate, Si, for the square root of M. We will assume that Si is
less than the desired value S, i.e. Si ≤ S. Next, assume that we add a small increment to this
estimate to make a better estimate, Si+1. Call this increment Ni+1:

Si+1 = (Si + Ni+1) ≤ S

Now, the remainder after the first estimate is: Ri = M – Si
2,

while after the second estimate is: Ri+1 = M – Si+1
2

= M – (Si+Ni+1)
2

= M – Si
2 – Ni+1 × (2 × S + Ni+1)

So, each time we pass through the algorithm, we subtract the following from the remainder:
Ri – Ri+1 = Ni+1 × (2×Si + Ni+1)

In binary, the increment values (the N’s) are single bits. Thus, each iteration through the
algorithm, we multiply the previous estimate by 2, add in the new bit (Ni+1), then shift by the
number of zeros in Ni+1 before subtracting from our remainder. This is very much like a divide
in which the divisor keeps changing. For example, consider finding the 4-bit square root of 118:

Starting: M= R0= 01110110 and S0 = 0000
Try: N1 = 1000 - 1000 ⇐ (2×S0+1000)×1000

R1= 00110110 ⇒ S1=S0+1000 = 1000
Try: N2 = 0100 - 10100 ⇐ (2×S1+0100)×0100

Result < 0 ⇒ S2=S1 = 1000
R2= 00110110 (unchanged)

Try: N3 = 0010 - 10010 ⇐ (2×S2+0010)×0010
R3= 00010010 ⇒ S3=S2+0010 = 1010

Try: N4 = 0001 - 10101 ⇐ (2×S2+0001)×0001
Result < 0 ⇒ S4=S3 = 1010
R4= 00010010 (unchanged)

Final result: 201110110 = 10102 with 100102 remainder

or: 118 = 10 with 18 remainder!

7

Problem 3a:
The above example showed unsigned M. Is it easy extend the algorithm for a signed M?

Problem 3b:
From this point on, assume M is unsigned. For a 64-bit, unsigned-value M, what is the largest
possible integer square-root, Smax? How many bits would it take to represent? Explain without
using a calculator. (hint: Start by finding the smallest integer that is bigger than Smax).

Problem 3c:
Also for a 64-bit unsigned-value M, what is the largest possible remainder, Rmax? How many
bits would it take to represent? Explain without using a calculator. (Use the same hint as
above).

8

Here is pseudo-code for a square root algorithm. Assume that the input value of M has been
restricted so that Smax is no more than 31 bits in size and Rmax is no more than 32 bits in size. Let
Result and Remain be 32-bit global values which will store the square root and remainder
respectively. Inputs Mhi and Mlow are 32-bit arguments that give the upper and lower 32-bits of
the input. This code is modeled after version 3 of the divider from class:

isqrt(Mlow,Mhi) ⇒ (Result, Remainder)
{ /* All temporaries are 32-bit values */

int nextbit, temp, topbit, lowerbits;

/* missing initialization instructions */

while (nextbit > 0) {
ROL96(topbits,Remainder,lowerbits);

/* Above restrictions on M ensure temp only 32 bits. */
temp = (2 * Result) | nextbit;
if (topbits > 0 || Remainder ≥ temp) {

Result = Result | nextbit;
SUBcarry(topbits, Remainder, temp);

}
nextbit = nextbit >> 1;

}
}

The ROL96(hi,low,extra) pseudo-instruction takes three 32-bit registers and treats
them as a combined 96-bit register. It shifts the combined value left by one position,
inserting a zero at the far right (of the extra register).

The SUBcarry(hi,low,subvalue) pseudo-instruction takes three 32-bit registers.
It treats the first two as a combined 64-bit register. It subtracts the 32-bit subvalue
from this 64-bit register.

Problem 3d:
The pseudo-code is missing some initialization instructions. What should be there?
(hint: look at the example square root again and try to figure out what the various arguments to
ROL96 must be. Also, make sure that every variable has an initial value!):

9

Problem 3e:
Assume that you have a MIPS processor that is missing the isqrt() instruction. Implement
isqrt()as a procedure. Assume that Mlow and Mhigh are in the $a0 and $a1 registers
respectively, and that the Result and Remain values are returned in registers $v0 and $v1
respectively. You can use ROL96 and SUBcarry pseudo-instructions, but don’t use any other
pseudo-instructions. Make sure to adhere to all MIPS calling conventions!

10

Problem 3f:
Implement the ROL96($t0,$t1,$t2) pseudo-instruction in 7 MIPS instructions. Assume that $t0,
$t1, and $t2 are the three input registers (with $t0 the most significant).
(hint: what happens if you use signed slt on unsigned numbers?)

Problem 3g:
Implement the SUBcarry($t0,$t1,$t2) pseudo-instruction in 3 MIPS instructions.

Problem 3h:
What is the maximum “CPI” of your isqrt() procedure? (i.e. what is the total number of
cycles to perform an isqrt)? Assume that each real MIPS instruction takes 1 cycle, and pseudo-
instructions ROL96 and SUBcarry take 7 and 3 cycles respectively:

11

EXTRA CREDIT [5pts => Save until last!]:
Draw the data path for a hardware square-root engine that does 64-bit square-roots. Explain
what you are doing and how this will be controlled.

12

Problem 4: New instructions for a multi-cycle data path

The Multi-Cycle datapath developed in class and the book is shown above. In class, we
developed an assembly language for microcode. It is included here for reference:

Field Name Values For Field Function of Field
Add ALU Adds
Sub ALU subtracts
Func ALU does function code (Inst[5:0])

ALU

Or ALU does logical OR
PC PC ⇒ 1st ALU input

SRC1
rs R[rs] ⇒ 1st ALU input
4 4 ⇒ 2nd ALU input
rt R[rt] ⇒ 2nd ALU input

Extend sign ext imm16 (Inst[15:0]) ⇒ 2nd ALU input
Extend0 zero ext imm16 (Inst[15:0]) ⇒ 2nd ALU input

SRC2

ExtShft 2nd ALU input = sign extended imm16 << 2
rd-ALU ALUout ⇒ R[rd]
rt-ALU ALUout ⇒ R[rt]ALU Dest
rt-Mem Mem input ⇒ R[rt]
Read-PC Read Memory using the PC for the address
Read-ALU Read Memory using the ALUout register for the addressMemory
Write-ALU Write Memory using the ALUout register for the address

MemReg IR Mem input ⇒ IR
ALU ALU value ⇒ PCibm

PC Write
ALUoutCond If ALU Zero is true, then ALUout ⇒ PC

Seq Go to next sequential microinstruction
Fetch Go to the first microinstructionSequence

Dispatch Dispatch using ROM

Ideal
Memory
WrAdr
Din

RAdr

32

32

32
Dout

MemWr

32
A

L
U

32
32

ALUOp

ALU
Control

32

IRWr

Instruction R
eg

32

Reg File

Ra

Rw

busW

Rb
5

5

32
busA

32busB

RegWr

Rs

Rt

M
ux

0

1

Rt

Rd

PCWr

ALUSelA

Mux 01

RegDst

M
ux

0

1

32

PC

MemtoReg

Extend

ExtOp

M
ux

0

1
32

0

1

2
3

4

16Imm 32

<< 2

ALUSelB

M
ux

1

0

32

Zero

Zero
PCWrCond PCSrc

32

IorD

M
em

 D
ata R

eg

A
L

U
 O

ut

B

A

13

In class, we made our multicycle machine support the following six MIPS instructions:

op | rs | rt | rd | shamt | funct = MEM[PC]
op | rs | rt | Imm16 = MEM[PC]

INST Register Transfers
ADDU R[rd] ← R[rs] + R[rt]; PC ← PC + 4
SUBU R[rd] ← R[rs] - R[rt]; PC ← PC + 4
ORI R[rt] ← R[rs] + zero_ext(Imm16); PC ← PC + 4
LW R[rt] ← MEM[R[rs] + sign_ext(Imm16)]; PC ← PC + 4
SW MEM[R[rs] + sign_ext(Imm16)] ← R[rs]; PC ← PC + 4
BEQ if (R[rs] == R[rt]) then PC ← PC + 4 + sign_ext(Imm16) || 00

else PC ← PC + 4

For your reference, here is the microcode for two of the 6 MIPS instructions:

Label ALU SRC1 SRC2 ALUDest Memory MemReg PCWrite Sequence
Fetch Add PC 4 ReadPC IR ALU Seq
Dispatch Add PC ExtShft Dispatch

RType Func rs rt Seq
rd-ALU Fetch

BEQ Sub rs rt ALUoutCond Fetch

In this problem, we are going to add three new instructions to this data path:

lui $rd, <const> ⇒ R[rd] ← Imm16 || 0000000000000000
multacc $rd, $rs, $rt ⇒ R[rd] ← (R[rs]×R[rt]) + R[rd]
bltual $rs, $rt <offset> ⇒ if (R[rs] < R[rt]) then

PC ← PC + 4 + sign_ext(Imm16) || 00
R[31] ← PC + 4

else
PC ← PC + 4

1. The lui instruction is familiar to you from the normal MIPS instruction set. It places the 16
bit immediate field into the upper 16 bits of R[rd], filling the lower 16 bits of R[rd] with
zeros. Important note: the encoding for the lui instruction has a zero in the rs field.

2. The multacc instruction (multiply-accumulate) uses register R[rd] as both a source and a
destination register. It multiplies the values R[rs] and R[rt], adds the result to register R[rd],
then places the result back into register R[rd]. Assume that this instruction does not overflow.

3. The bltual instruction (branch on less than unsigned and link) checks to see if R[rs] is less
than R[rt]. If it is, it will save the PC in $ra (like jal), then branch to the offset.

14

Problem 4a:
How wide are microinstructions in the original datapath (answer in bits and show some work!)?

Problem 4b:
Draw a block diagram of a microcontroller for the unmodified datapath. Include sequencing
hardware, the dispatch ROM, the microcode ROM, and decode blocks to turn the fields of the
microcode into control signals. Make sure to show all of the control signals coming from
somewhere. (hint: The PCWr, PCWrCond, and PCSrc signals must come out of a block
connected to thePCWrite field of the microinstruction).

Problem 4c:
Come up with a binary encoding for the ALUDest field of the microinstruction (rd-ALU,
rt-ALU, rt-Mem, or blank). Construct logic which maps this binary field to the
appropriate control signals from problem 4b.

15

Problem 4d:
Describe/sketch the modifications needed to the datapath for the new instructions (lui,
multacc, and bltual). Asume that the original datapath had only enough functionality to
implement the original 6 instructions. Try to add as little additional hardware as possible. Make
sure that you are very clear about your changes.

16

Problem 4e:
Describe changes to the microinstruction assembly language for these new instructions. How
wide are your microinstructions now?

Problem 4f:
Write complete microcode for the three new instructions. Include the Fetch and Dispatch
microinstructions. If any of the microcode for the original instructions must change, explain how
(Hint: since the original instructions did not use R[rd] as a register input, you must make sure
that your changes do not mess up the original instructions).

Problem 4g:
What are the CPI values for each of the three new instructions?

