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CS 152: Computer Architecture and Engineering 
CS 252: Graduate Computer Architecture 

 
Midterm #2 

April 17th, 2019 
Professor Krste Asanović 

SOLUTIONS 
Name:______________________ 
SID:______________________ 

I am taking CS152 / CS252 
(circle one) 

 
This is a closed book, closed notes exam. 

80 Minutes, 19 pages. 
 

Notes: 
• Not all questions are of equal difficulty, so look over the entire exam! 
• Please carefully state any assumptions you make. 
• Please write your name on every page in the exam. 
• Do not discuss the exam with other students who haven’t taken the exam. 
• If you have inadvertently been exposed to an exam prior to taking it, you 

must tell the instructor or TA. 
• You will receive no credit for selecting multiple-choice answers without 

giving explanations if the instructions ask you to explain your choice. 
 

Question CS152 Point Value CS252 Point Value 
1 20 16 
2 20 -- 
3 20 20 
4 20 20 

Grad Supplement -- 20 
TOTAL 80 76 
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Problem 1: Vector Machines and Company  
 
Multiple choice: Check one unless otherwise noted 
 
 
A) (1 Point) What sort of parallelism do vector machines primarily exploit?  

 
[   ]  ILP   [X]  DLP  [   ]  TLP 

 
 

B) (1 Point) What architectural features to exploit parallelism are present in a modern, 
general-purpose processor (e.g. x86 server processor) (check all that apply). 
 
[X] SIMD [X]  Multi-threading [X]  Superscalar Execution [   ] VLIW [X] Pipelining 

 
 
 

C) (1 Point) Which technique do both GPUs and vector machines use to remove per-
element control hazards?  
 

[X]  Predication   [   ]  Trace Scheduling  [   ]  Branch Prediction 
 

 
 
D) (3 Points) Short Answer: Give one distinguishing feature of a traditional vector 
architecture (e.g. Cray-style vectors) versus a packed-SIMD architecture (e.g. Intel AVX)? Give 
one advantage of each approach.  
 
Specifically, we were looking for variable vector length. We accepted a few others too.  
 
Vector advantages: 

• Expressive instructions make it easier to write vectorized assembly for a wider range of 
applications. 

• Code is more portable, as VL can be set up to the maximum vector length of the machine 
• More efficient ISA encoding, since opcode space isn’t wasted defining multiple variants 

of instructions acting on different vector lengths. 
 
SIMD advantages: 

• Classical (subword) packed-SIMD machines are simple to implement in hardware and 
can reuse GPRs.  

 
It’s important to note that that contemporary packed-SIMD architectures (e.g. Intel AVX) look 
increasingly like traditional vector machines (support for scatter-gather, strided memory ops, 
much longer vectors, predication) but still lack support for variable length.  
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E) (12 points for 152, 8 points for 252) Vectorize the following double-precision C code 
using the RISC-V vector specification described in lab 4. See appendix A for the vector 
instruction set listing.  

 
for (i = 0; i < N; i++) { 

D[i] = A[i] + B[i] * C[i]; 
} 
 
Assume: 

• Vector registers v0 – v8 have been configured to hold vectors of double-precision floats. 
• Register a0 holds an integer N; a1 – a4 hold double* A, B, C and D, respectively. 
• A, B, C, and D do not overlap. 
• Feel free to use registers a5 – a7 to hold scalar values 

 
# There are myriad legal code sequences; this is one 
stripmine_loop: 
 # Your code begins 
 setvl a5, a0 
 # Load input vectors 
 vld v1, 0(a1) 
  vld v2, 0(a2) 
 vld v3, 0(a3) 
 # B[] * C[] + A[] 
 vmadd v4, v2, v3, v1 

# Store back to D 
 vst v4, 0(a4) 
 # Subtract the vector length from the input length 
 sub a0, a0, a5 
 # Calculate the pointer bump  
 slli a6, a5, 3 
 # Bump all pointers 
 add a1, a1, a6 

add a2, a2, a6 
add a3, a3, a6 
add a4, a4, a6 
# Branch if there are still elements to process 

 bne a0, zero, stripmine_loop 
# Your code ends 

 
F) (2 points) Name a vector-specific microarchitectural technique one could apply to 
improve throughput on the code above.  
 

 
  Chaining  
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Problem 2: VLIW 
 
In this problem, we will optimize a vector-vector add kernel for a VLIW machine. 
 
 

 
// C implementation 
void vvadd(double restrict *A, 
           double restrict *B, 
           double restrict *C, 
           int n) 
{ 
  for (int i = 0; i < n; i++) 
    C[i] = A[i] + B[i]; 
} 
 
 
# Naive RISC-V implementation 
# t0: i, a0: A, a1: B, a2: C, a3: n 
# Assume n > 0, t0 = 0 
       ... 
loop:  fld    f0, 0(a0) 
       fld    f1, 0(a1) 
       fadd.d f0, f0, f1 
       fsd    f0, 0(a2) 
       addi   a0, a0, 0x8 
       addi   a1, a1, 0x8 
       addi   a2, a2, 0x8 
       addi   t0, t0, 0x1 
       bne    t0, a3, loop 
done:  jr     ra 
 

 
The program will be mapped to a VLIW machine with the following specs: 

• Two ALU units with one-cycle latency; ALU1 is used for branches 
• One fully-pipelined load unit with a two-cycle latency 
• One fully-pipelined store unit. For this question, ignore the latency of memory-memory 

dependencies and assume C does not overlap with A or B. 
• One fully-pipelined FPU with a three-latency 
• There are no interlocks, and all latencies are explicitly exposed in the ISA 

 
Assumptions: 

• Register t0 is initialized to zero before the start of your code, and n > 0. 
• There are no exceptions or interrupts in the execution of the program. 
• You may assume that n is a very large number. 
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A)  (8 points, 152 ONLY) Schedule the algorithm on the VLIW machine without unrolling or software pipelining. Try to minimize 
the number of cycles, but prioritize correctness! 

 
Label ALU1 ALU2 Load Store FP 
init: beq a3, r0, done addi t0, r0, 0    

loop: addi a0, a0, 0x8 addi t0, t0, 0x1 fld  f0, 0(a0)   

 addi a1, a1, 0x8  fld  f1, 0(a1)   

      

     fadd.d f0, f0, f1 

      

      

 bne  t0, a3, loop addi a2, a2, 0x8  fsd  f0, 0(a2)  

done: jr   ra     
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B) (12 points, 152 ONLY) Schedule the algorithm on the VLIW machine using software pipelining (you do not need to unroll the 
loop). Try to minimize the number of cycles, but prioritize correctness! 

 
Label ALU1 ALU2 Load Store FP 
init: beq a3, r0, done addi t0, r0, 0    

 addi a1, a1, 0x8  fld  f1, 0(a1)   

 addi a0, a0, 0x8  fld  f0, 0(a0)   

      

     fadd.d f0, f0, f1 

loop: addi a1, a1, 0x8  fld  f1, 0(a1)   

 addi a0, a0, 0x8  fld  f0, 0(a0)   

 addi a2, a2, 0x8 addi t0, t0, 0x1  fsd  f0, 0(a2)  

 bne  t0, a3, loop    fadd.d f0, f0, f1 

done: jr   ra     
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Problem 3: Unified Physical Register File Out-of-Order Machines 
 
Throughout this question, assume the following machine specifications: 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• The machine can fetch, dispatch, issue, and commit at most one instruction per cycle. 
• The processor runs the RISC-V instruction set with the F and D extensions. 
• Assume every load hits in the single-cycle-hit L1 D$ (indicated as DC in the pipeline). 
• Register renaming follows the Unified Physical Register File scheme. 
• Unless otherwise directed, assume there are no bypass paths for data. 
• Instructions are written into the ROB at the end of the DEC/REN1 stage. 
• Instructions are written into the issue window at the end of the REN2/DIS stage. 
• Instructions are released from the issue window in the ISS stage. 
• Commit is handled by a decoupled unit that looks at the ROB entries. 
• Jump instructions issue and complete immediately on the same cycle that they dispatch. 
• Assume all jump targets are perfectly predicted. 
• Instructions may issue as soon as the same cycle that the writer of their last outstanding 

operand is in the writeback stage. 
• Ignore structural hazards on the register file ports 
• Each functional unit has its own issue window, separate from the ROB 
  

 

 
MUL / 
DIV 

 
ARITH / 

BRANCH 
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Multiple Choice 
(mark ALL that apply!) 

 
 
 
A) (2 points) Which of the following fields are part of an issue window entry in this machine?  
[X] Physical destination register 
[   ] Architectural destination register 
[   ] Last physical destination register 
[X] Source present bits 
[X] Operand physical register specifiers 
[   ] Operand data 
[   ] A flag to mark if the instruction has caused an exception 
 
B) (1 point) An instruction in an issue window is guaranteed to also be in the ROB. 

[X] True  [   ] False 
 
C) (1 point) An instruction in the ROB is guaranteed to also be in an issue window. 

[   ] True  [X] False 
 
D) (1 point) An instruction enters the issue window in what phase of execution? 

[X] Dispatch  [   ] Issue [   ] Fetch 
 
 
E) (1 point) In a data-in-ROB design, which of the following acts as a source for operands?  

[X] Architectural register file 
[   ] Physical register file 
[X] ROB 
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F) (14 points) Consider the following code sequence that begins at address 0x00010000 
 
loop:  fld    f0, 0(a0) 
       fld    f1, 0(a1) 
       fadd.d f0, f0, f1 
       fsd    f0, 0(a2) 
       addi   a0, a0, 0x8 
       addi   a1, a1, 0x8 
       addi   a2, a2, 0x8 
       addi   t0, t0, 0x1 
       bne    t0, a3, loop 
 
Assume that the machine enters this loop with all instructions fetched, zero valid entries in the 
ROB, and the following initial rename table and free list contents before the first fld enters the 
ROB. Dequeue free list entries from the top. 
 
Unused architectural registers are omitted from the rename table for clarity. 
 

Arch. register Phys. register 
a0 p1 
a1 p5 
a2 p33 
t3 p17 
t0 p41 
f0 p62 
f1 p28 

 
Free List 

 
 

p4 
p55 
p18 
p30 
p39 
p11 
p59 
p60 
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Now consider the case in which the fsd takes an exception. Fill in the following table which 
describes the execution of each instruction) for eight instructions, beginning with the first fld. In 
the “Time” columns, fill in the cycles in which the instruction dispatches, issues, completes, and 
commits (if it commits), respectively. 
 
Notes: 

• The class was split about 50/50 between two cases. In one case, it was assumed that one 
instruction per issue queue could issue in a given cycle. In the other, the older fadd.d 
issues before the newer addi, blocking the addi for one cycle. Therefore, both answers 
were considered correct, and solutions are listed for both cases. 

• You were free to choose any number as the start cycle, and the rest of the boxes were 
graded based on their value relative to the start cycle. I chose zero, but many of you 
chose 1, 2, or even 5! 

• No points were deducted if PR1 and PR2 were swapped for the stores, but the order in the 
chart with the base address as PR1 is the canonical ordering. 

• The cycle for the store to “complete” was somewhat tricky to interpret, so any value from 
3-5 cycles after its issue was accepted. I used 3 cycles as the baseline, since that is when 
it goes to the data cache. 

• The store does not actually commit! 
 
 
Assuming the newer instruction waits for the older instruction: 
 

PC Physical Register Specifiers Cycle # 
PRd LPRd PR1 PR2 Dispatch Issue Complete Commit 

0x00010000 p4 p62 p1 -- 0 1 6 7 

0x00010004 p55 p28 p5 -- 1 2 7 8 

0x00010008 p18 p4 p4 p55 2 7 13 14 

0x0001000C -- -- p33 p18 3 13 16 -- 

0x00010010 p30 p1 p1 -- 4 5 8 -- 

0x00010014 p39 p5 p5 -- 5 6 9 -- 

0x00010018 p11 p33 p33 -- 6 8 11 -- 

0x0001001C p59 p41 p41 -- 7 9 12 -- 
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Assuming one instruction per issue queue can issue per cycle: 
 

PC Physical Register Specifiers Cycle # 
PRd LPRd PR1 PR2 Dispatch Issue Complete Commit 

0x00010000 p4 p62 p1 -- 0 1 6 7 

0x00010004 p55 p28 p5 -- 1 2 7 8 

0x00010008 p18 p4 p4 p55 2 7 13 14 

0x0001000C -- -- p33 p18 3 13 16 -- 

0x00010010 p30 p1 p1 -- 4 5 8 -- 

0x00010014 p39 p5 p5 -- 5 6 9 -- 

0x00010018 p11 p33 p33 -- 6 7 10 -- 

0x0001001C p59 p41 p41 -- 7 8 11 -- 
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Problem 4: Branch Prediction  
 
A) (1 Point) Which of the following language-level constructs are typically compiled to use 
register indirect jumps? Check all that apply. 

 
[X]  Case statements     
[X]  Subroutine returns  
[X]  Dynamically dispatched function calls 

 
 
B) (1 Point) How many bits of global history are required to perfectly predict the direction 
of the branch at label F? Check one answer. 
 
if (a == 2)  // A 
  b = a;     // B 
if (b > c) { // C 
  d = 0;     // D 
} else { 
  d = 1;     // E 
} 
if (d != 0)  // F 
  e = 0;     // G 
...          // H 

A: li   t0, 0x2 
   beq  a0, t0, C 
B: mv   a1, a0 
C: blt  a1, a2, E 
D: li   a3, 0x0 
   j    F 
E: li   a3, 0x1 
F: beq  a3, r0, H 
G: li   a4, 0x0 
H: ... 
 

 
   

[   ]   0   [X]  1  [   ]  2   [   ]  3 
  

 
C) (2 Points) Why don’t machines speculatively execute down both branch directions? 
 
(See lecture 12, slide 14) 
If a machine speculatively executes down both sides of the branch one of those paths is 
guaranteed to be a mis-speculation. This forces the machine to flush mis-speculated instructions 
on every branch and uses resources inefficiently.  Conversely, since modern branch predictors 
are so accurate, machines can generally speculate down the correct path through multiple 
branches. This fills the pipeline with useful instructions, more efficiently using superscalar 
resources.   
 
Longer discussion: 
The case for speculating down both sides gets worse if the machine needs to speculate again 
before the branch is resolved, as will be the case with a deep superscalar pipeline. If we 
encounter another branch on both sides of the first branch and speculate down those, only ¼ of 
the explored is going to be correct. Moreover, mis-speculation is harder to recover from, as all 
younger instructions aren’t necessarily on the mis-speculated path.  
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For the remainder of this problem, we’ll consider the following code, which counts the number 
of false to true transitions in an array of C booleans.  
 
These code listings are provided in appendix B.  
 

bool array[N] = {…};  

int posedge = 0; 

for (int i = 1; i < N; i++) {  

  if (array[i] && !array[i-1]) 

 posedge++;    

} 

 

Specifically, we’ll consider the following assembly implementation of the loop above. 
  
// a0 holds N 

// a1 holds array 

li       a2, 0         // Initialize posedge 

add      a3, a1, a0    // Set up loop bound 

loop:  

addi     a1, a1, 1     // Bump pointer  

bge      a1, a3, done  // Check loop condition  

lbu      a4,  0(a1)    // Load current element (array[i]) 

lbu      a5, -1(a1)    // Load previous element (array[i-1]) 

sltu     a4, x0, a4    // Set a4 to 1 if nonzero, else zero a4 

bgeu     a5, a4, loop  // Branch if not posedge (prev nonzero or equal) 

addi     a2, a2, 1     // Increment posedge 

j loop  

done:  
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D) (7 points) Branch History Table (BHT) 
The processor that this code runs on uses a 512-entry branch history table (BHT), indexed by PC 
[10:2]. Each entry in the BHT contains a 2-bit counter, initialized to the 10 state (weakly taken).  
Each 2-bit counter works as follows: the state of the 2-bit counter decides whether the branch is 
predicted taken or not taken, as shown in the table below. If the branch is actually taken, the 
counter is incremented (e.g., state 00 becomes state 01). If the branch is not taken, the counter is 
decremented. The counter saturates at 00 and 11 (a not-taken branch while in the 00 state keeps 
the 2-bit counter in the 00 state) 

State Prediction 
00 Not taken 
01  Not taken 
10 Taken 
11  Taken 

 
Assuming array = {0,1,0,1,0,1,0}, fill out the following tables. Each table corresponds to one 
branch and their respective BHT entries. Each row corresponds to one execution of the branch. 
Fill it out as follows:  

• For the Prediction column: use T for Taken and NT for Not Taken 
• For the Correct column: use Y to indicate a correct prediction and, N for incorrect  
• For the State column: write the state of the entry on that cycle {00, 01, 10, 11} 

Finally, fill out the total number of correct predictions in the boxes at the bottom of the table. 
The first two branches have been filled out for you.  

 

 
 

 
  

 
 

 
  

bge (loop condition) 
State Prediction 

(T / NT) 
Correct? 
(Y / N) 

10 T N 

01 NT Y 

00 NT Y 

00 NT Y 

00 NT Y 
 

00 NT Y 

00 NT N 

Total Correct: 5 

bgeu (skip condition) 
State Prediction 

(T / NT) 
Correct? 
(Y / N) 

10 T N 

01 NT N 

10 T N 

01 NT N 

10 T N 

01 NT N 

10   

Total Correct: 0 
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E) (2 points) Suppose we keep two bits of global branch history which we use to index into 
one of four BHTs each with the same structure as the BHT in part A. What sort of branch 
correlation can this predictor resolve that the BHT in part A cannot?  
 

 
_______Spatial_____ Correlation  

 
F) (7 points) Suppose we ran the code from part E on a long input array (N > 100000), and 
that the input array’s values alternate every element (i.e. {0, 1, 0, 1…}). Give the final state of all 
entries of the predictor that could be indexed by the two branches. If an entry is never indexed, 
leave it blank. How accurate is this predictor over the entire execution of the loop? Explain 
briefly how you arrived at your solution.  

Assume: 

• The global history register is initially 01, with the LSB indicating the most recent branch 
• All BHT entries are initially 10 (weakly taken), as in part E 
• N is odd 

 

BHT Entry BHT 0 BHT 1 BHT 2 BHT 3 

bge (loop) 00 01   

bgeu (skip) 11  00  

 
The trick here is to note that, since the skip condition is taken every other iteration, global history 
will be {00, 01} on the BGE and {00, 10} on the BGEU for {no posedge, posedge [on the last 
iteration]} respectively. Thus we need only consider those four entries. In steady state: 
 
BGE is never taken à both entries should be 00 
BGEU is always taken if GH = 00 (no posedge on last iteration) à BHT0 entry = 11  
BGEU is never taken if GH  = 10 (posedge in the last iteration) à BHT2 entry = 00   
 
Thus after some training, all branches are predicted with 100% accuracy -- our final answer. In 
steady state the table should look like:  
 

BHT Entry BHT 0 BHT 1 BHT 2 BHT 3 
bge (loop) 00 (Strongly NT) 00 (Strongly NT) ? ? 
bgeu (skip) 11 (Strongly T) ? 00 (Strongly T) ? 

 
That’s the bulk of the question. For full credit we need to consider the startup conditions, which 
may touch other entries, and loop exit, which will perturb the steady-state condition.  
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For startup:  
Loop iter 1:  
BGE 1: BHT 1  Predict T; Mispredict -> History: 01 -> 10; State: 10 ->  01 * 
BGUE 1: BHT 2 -> Predict T; Mispredict -> History: 10 -> 00; State 10 -> 10 * 
Loop iter 2:  
BGE -> BHT 0 -> Predict T; Mispredict -> History 00 -> 00; State 10 -> 01* 
BGUE -> BHT 0 -> Predict T; Correct -> History 00 -> 01; State 10 -> 11* 
* : Now trained to predict in the correct direction 
 
At this point we’ve hit the recurrence and all relevant BHT entries are adequately trained (but not 
at their final states).  We’ve only used entries that will access in steady state à no changes to the 
steady state table above.   
 
For exit:  
 
Since N is odd, the final skip condition will be taken (no posedge) à global history before the 
branch out of the loop will thus be 01. On the final BGE we predict NT, so we increment that 
entry.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
  

Prediction accuracy: 100% 
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Appendix A: Vector Architecture for Question 1 
 
This instruction listing is identical to lab 4’s but with a setvl instruction that has identical 
semantics to the preprocessor macro provided in lab 4. This instruction first sets VL to                
min(maximum vector length, rs1); and then returns the new VL.  
 
Notes: 

- Omitting the final vector mask (vm) argument to all instructions is legal, and treats all 
elements i  < VL as active.  
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Appendix B: Code Listings for Question 4 
 
C implementation:  
 

bool array[N] = {…};  

int posedge = 0; 

for (int i = 1; i < N; i++) {  

  if (array[i] && !array[i-1]) 

 posedge++;    

} 

 

Assembly implementation under consideration.  
  
// a0 holds N 

// a1 holds array 

li       a2, 0         // Initialize posedge 

add      a3, a1, a0    // Set up loop bound 

loop:  

addi     a1, a1, 1     // Bump pointer  

bge      a1, a3, done  // Check loop condition  

lbu      a4,  0(a1)    // Load current element (array[i]) 

lbu      a5, -1(a1)    // Load previous element (array[i-1]) 

sltu     a4, x0, a4    // Set a4 to 1 if nonzero, else zero a4 

bgeu     a5, a4, loop  // Branch if not posedge (prev nonzero or equal) 

addi     a2, a2, 1     // Increment posedge 

j loop  

done:  

 

Reference input: {0, 1, 0, 1, 0, 1, 0} 
 

BHT entry state table and predictions.  
  

 

 

 

 

 

State Prediction 
00 Not taken 
01  Not taken 
10 Taken 
11  Taken 


