
CS 162 Spring 2017, 2nd Midterm Exam March 21, 2017

 Page 1/15

University of California, Berkeley
College of Engineering

Computer Science Division – EECS

Spring 2017 Ion Stoica

Second Midterm Exam
March 21, 2017

CS162 Operating Systems

Your Name:

SID AND 162 Login:

TA Name:

Discussion Section
Time:

General Information:
This is a closed book and one 2-sided handwritten note examination. You have 80 minutes to
answer as many questions as possible. The number in parentheses at the beginning of each
question indicates the number of points for that question. You should read all of the questions
before starting the exam, as some of the questions are substantially more time consuming.

Write all of your answers directly on this paper. Make your answers as concise as possible. If there
is something in a question that you believe is open to interpretation, then please ask us about it!
 Good Luck!!

QUESTION POINTS ASSIGNED POINTS OBTAINED

1 24

2 20

3 20

4 22

5 14

TOTAL 100

CS 162 Spring 2017, 2nd Midterm Exam March 21, 2017

 Page 2/15

P1 (24 points total) True/False and Why? CIRCLE YOUR ANSWER. For each
question: 1 point for true/false correct, 2 point for explanation. An explanation cannot
exceed 2 sentences.

a) A multilevel page table hierarchy will always take less storage space than a single
level page table, given the same virtual address space size.

TRUE FALSE

Why?

When all pages in the virtual memory are allocated, a single level page table will
take less space, as all its PTEs will be used. While this will also be true in the case
of a multilevel page table hierarchy, in this case you need additional storage for
the page table at the first level.

b) Forcing all threads to request resources in the same order (e.g., resource A before
B, B before C, and so on) will prevent deadlock.

TRUE FALSE
Why?

Imposing a strict order prevents a cycle.

CS 162 Spring 2017, 2nd Midterm Exam March 21, 2017

 Page 3/15

c) Increasing the size of a cache always decreases the number of total cache misses,

all things held constant (replacement policy, workload, associativity).

TRUE FALSE
Why?

Recall the Belady’s anomaly.

d) Adding a TLB may make process context switching slower.

TRUE FALSE
Why?

Each process has its own TLB. Thus, the process needs to flush the TLB on
context switching which will lead to increasing the context switching time.

e) It is not possible to share memory between two processes when using multiple-
level page tables.

TRUE FALSE
Why?

Two PTEs in the page tables of the two processes can point to the same physical page.

CS 162 Spring 2017, 2nd Midterm Exam March 21, 2017

 Page 4/15

f) Round-robin scheduling has always a higher average response time than shortest-
job-first.

TRUE FALSE
Why?

If all jobs have the same size and quanta is larger than the job size, then both RR
and SJF will have the same average response times.

g) One way to respond to thrashing is to kill a process.

TRUE FALSE
Why?

Yes. By killing a process we free the memory and we give a chance to other
processes to fit their working sets in memory.

h) With uniprogramming, applications can access any physical address.

TRUE FALSE
Why?

In the case of uniporgramming there is a single application running on the
machine and there is no memory protection.

CS 162 Spring 2017, 2nd Midterm Exam March 21, 2017

 Page 5/15

P2 (20 points) Demand Paging: Consider the following sequence of page accesses:

A, B, D, C, B, A, B, A

a) (10 points) Fill in the table below assuming the FIFO, LRU, and MIN page
replacement policies. There are 3 frames of physical memory. The top row
indicates the frame number, and each entry below contains the page that resides in
the corresponding physical frame, after each memory reference (we have already
filled in the row corresponding to accessing A). For readability purposes, only fill
in the table entries that have changed and leave unchanged entries blank. If
there are several pages that meet the replacement criteria, break ties using the
lexicographical order, i.e., A takes priority over B, B over C, and C over D.

 FIFO LRU MIN

F1 F2 F3 F1 F2 F3 F1 F2 F3

A A

A

A

B

B

B

B

D

D

D

D

C C

C

C

B

A

A

A

B

B

A

Page Faults
6

5

4

CS 162 Spring 2017, 2nd Midterm Exam March 21, 2017

 Page 6/15

b) (4 points) Give a sequence of page accesses in which LRU will generate a page
fault on every access.

If the pattern was ABCDABCDABCD….. And there were only 3 pages in physical
memory, then you would get a page fault on every access.

c) (3 points) Demand paging can be thought of as using main memory as a cache for
disk. Fill in the properties of this cache:

a. Associativity: fully associative

b. Write-through/write-back? : write-back

c. Block Size (assume 32-bit addresses, 4-byte words, and 4KB pages) ? :

4KB, 1 page

d) (3 points) The Nth chance replacement algorithm relies on a parameter N. Why
might one choose a large N value? Why might one choose a small N value?

Choose a large N value for a better approximation of LRU. Choose a small N value
for efficiency; a large N value would take a long time to evict a page b/c many loops
required.

CS 162 Spring 2017, 2nd Midterm Exam March 21, 2017

 Page 7/15

P3 (20 points) Caching: Assume an 8KB cache with 32B blocks, on a machine that uses
32-bit virtual and physical addresses.

a) (6 points) Specify the size and name of each field (i.e., cache tag, cache index,
and byte select / offset) in the physical address for the following cache types:

a. Direct Mapped
	
																	31																																																																																																																									0	

															

	
	
																	31																																							12																																							4																																				0	

														Tag	=	19b	 Index	=	8b	 Offset	=	5b	

	
	
	
	

b. Fully associative
	
																	31																																																																																																																									0	

	

	
																	31																																																																																4																																				0	

														Tag	=	27b	 Offset	=	5b	

	
	
	
	

c. Four-way associative

 																	31																																																																																																																									0	

	

	
																	31																																							10																																							4																																				0	

														Tag	=	21b	 Index	=	6b	 Offset	=	5b	

	
	
	
	
	
	

CS 162 Spring 2017, 2nd Midterm Exam March 21, 2017

 Page 8/15

b) (11 points) You’ve finished implementing your cache, which ended up being a 2-
Way Set Associative cache that uses an LRU replacement policy. To test it out,
you try the following sequence of reads and writes:

read from 0x705F3140
write 0x1 to 0x705F3140
write 0x2 to 0x705F3150
write 0x2 to 0x705F3148
write 0x3 to 0x707A2150
write 0x3 to 0x035F2154
read from 0x705F3140

Recall that caching happens at the block level, i.e., the unit of transfer between
cache and main memory is one block. Also, assume that a write leads to caching
the data, the same as a read. Initially, assume the cache is empty. Please answer
the following questions:

a. (5 points) How many misses does the above access pattern exhibit?
	
For	a	2-way	associative	cache	we	have:	
	
																	31																																							11																																							4																																				0	

														Tag	=	20b	 Index	=	7b	 Offset	=	5b	

	
These are the tag/index/offset for each address:
	
0x705F3140: (tag = 0x705F3, index = 0xA, offset = 0x0)	
0x705F3150: (tag = 0x705F3, index = 0xA, offset = 0x10)	
0x705F3148: (tag = 0x705F3, index = 0xA, offset = 0x8)
0x707A2150: (tag = 0x707A2, index = 0xA, offset = 0x10)	
0x035F2154: (tag = 0x035F2, index = 0xA, offset = 0x14)

Since all addresses have the same index all accesses are in the same associative set.

read from 0x705F3140 # cache block (tag = 0x705F3, index = 0xA)
write 0x1 to 0x705F3140 # hit block (tag = 0x705F3, index = 0xA)
write 0x2 to 0x705F3150 # hit block (tag = 0x705F3, index = 0xA)
write 0x2 to 0x705F3148 # hit block (tag = 0x705F3, index = 0xA)
write 0x3 to 0x707A2150 # cache block (tag = 0x707A2, index = 0xA)
write 0x3 to 0x035F2154 # cache block (tag = 0x035F2, index = 0xA)
 # evict block (tag = 0x705F3, index = 0xA)
 # according to LRU policy
read from 0x705F3140 # cache block (tag = 0x705F3, index = 0xA)
 # evict block (tag = 0x707A2, index = 0xA)
 # according to LRU policy

CS 162 Spring 2017, 2nd Midterm Exam March 21, 2017

 Page 9/15

	
Every “cache” is a miss, so we have 4 misses.
	
	
	

b. (3 points) Assume the cache is a write-through cache. How many writes
are taking place between cache an memory?

	
	

Every	write	results	in	writing	to	main	memory,	so	we	have	5	writes	to	
memory.	

	
	
	
	
	
	
	
	
	

c. (3 points) Assume that cache is a write-back cache. How many writes are
taking place between cache and memory?

	
The only times we write to memory is when we evict a dirty blocks, so in this
case we have only two writes to memory.

	
c) (4 points) Now consider that your system has 5ns of latency when accessing

cache and 70ns when accessing main memory. What should your application’s
average hit rate be in order to have an average memory access latency of 15ns?

Let HR be the hit rate 0 <= HR <= 1

HR * 5ns + (1-HR) * 75ns = 15ns
5 * HR + 75 - HR * 75 = 15

CS 162 Spring 2017, 2nd Midterm Exam March 21, 2017

 Page 10/15

70 * HR = 60
HR = 60/70 ~ 86%

	
	
P4 (22 points) Address Translation: Consider a computer with 16 bit virtual and
physical addresses. Address translation is implemented by a two-level scheme combining
segmentation and paging. The page size is 256 bytes.

Virtual address format:

2b (segment #) 6b (page #) 8b (offset)
	
Segment table (Base Address specifies the address of the page table associated with the
segment, and Limit specifies the total number of bytes in the segment):

Segment ID Base Address Limit

0x0 0x4000 0x1000

0x1 0xC000 0x2000

0x2 0x8000 0x0200

	
Page Table start address: 0x4000

Page #

0x20

0x30

0x31
	
Page Table start address: 0x8000

Page #

0xC0

0xC1
	
Page Table start address: 0xC000

Page #

CS 162 Spring 2017, 2nd Midterm Exam March 21, 2017

 Page 11/15

0x40

0x44
a) (6 points) What is physical address corresponding to virtual address 0x4125 ?

0x4125 = 0100 0001 0010 0101
Segment # = 01 => page table address 0xC000
Page # = 000001 => physical page # = 0x44
Physical address is then 0x4425

b) (12 points) Consider the following assembly code computing a string’s length:

0x8150 .data str: .asciiz "Hello World"
0x01F4 main: li $t1, 0 # $t1 is the counter; set it to 0
0x01F8 la $t0, str # load address (la) of str into $t0
0x01FC cnt: lb $t2, 0($t0) # Load first byte in $t2 from address
0x0200 beqz $t2, end # if $t2 == 0 then goto label “end”
0x0204 add $t0, $t0, 1 # else increment the address
0x0208 add $t1, $t1, 1 # and increment the counter
0x020C j cnt # goto “cnt”
0x0210 end:
	
Fill in the following table after executing each of the first 8 instructions in the above
code. The program counter (PC) is initialized to 0x01F4, i.e., the execution starts with
instruction li $t1, 0.
	
Instruction Physical

address of
instruction

Content of $t0
(after executing
instruction)

Content of $t1
(after executing
instruction)

Content of $t2
(after executing
instruction)

li $t1, 0 0x30F4 0

la $t0, str 0x30F8 0x8150

lb $t2, 0($t0) 0x30FC ‘H’

beqz $t2, end 0x3100

add $t0,$t0,1 0x3104 0x8151

add $t1, $t1, 1 0x3108 1

j cnt 0x310C

CS 162 Spring 2017, 2nd Midterm Exam March 21, 2017

 Page 12/15

1lb $t2, 0($t0) 0x30FC ‘e’

1

1

	
	
	

c) (4 points) Assume that instead of “Hello World” we have a 200-byte long
string. Are there any changes we need to make to the segment or page tables to
support the 200-byte string? If yes, use one sentence to describe the change. (The
code is unchanged and addresses for each instruction and data remain the same.)

The string starts at 0x8150 = 1000 0001 0101 0000
Segment # = 10 => page table address = 0x8000
Page # = 1 => physical page # = 0xC1

Since offset is 0x50 (i.e., 80), and the page size is 256 bytes, the 200-byte string
doesn’t fit in the page, so we need to allocate an extra physical page.

Note: we did not give any credit for answers stating that you need to increase the
segment limit since the segment limit is large enough—the segment limit refers to
the number of pages in the segment and not to bytes.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

CS 162 Spring 2017, 2nd Midterm Exam March 21, 2017

 Page 13/15

	
	

	
P5 (14 points) Banker’s Algorithm:	

a) (6 points) Suppose that we have the following resources: A, B, C and threads T1,
T2, T3, T4. The total number of instances for each resource is:

Total

A B C

11 21 19

Further, assume that the threads have the following maximum requirements and current
allocations:

Thread ID Current Allocation Maximum Allocation

A B C A B C

T1 2 3 10 4 10 19

T2 1 6 3 5 9 5

T3 4 7 3 9 13 6

T4 2 3 1 4 5 3

Is the system in a safe state? If “yes”, show a non-blocking sequence of thread
executions. Otherwise, provide a proof that the system is unsafe. Show your work and
justify each step of your answer.

Yes. A safe sequence is: T4 à T2 à T3 à T1

CS 162 Spring 2017, 2nd Midterm Exam March 21, 2017

 Page 14/15

b) (4 points) Repeat question (a) if the total number of B instances is 20 instead of
21.

	
No,	there	is	no	safe	sequence	because	no	thread	can	satisfy	its	allocation	for	
resource	B.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

c) (4 points) Give one reason using no more than two sentences of why you might
decide not to use Banker’s algorithm to avoid deadlock.

	
Banker’s algorithm is slow; needs to re-evaluate on every request. It is hard to
accurately quantify how many resources a system has or how much each process will
actually need.

CS 162 Spring 2017, 2nd Midterm Exam March 21, 2017

 Page 15/15

	

