# CS162, Spring 1998 Midterm 2 Professor Alan Smith

## Problem #1

What is the relocation table? What is in it? How does the loader use it? (10)

### Problem #2

Suppose we have hardware that supports segmentation. Could we use it to support paging instead? Why or why not? (10)

#### Problem #3

Could we do page replacement in main memory on a set associative basis? Why or why not? How would it work? What are the tradeoffs? (10)

#### Problem #4

Given that the following cylinders have I/O requests pending, that the requests arrived in the order shown, that the disk head is currently at track 9, and that the last two requests serviced were on cylinders 8 and 9 (in that order), show the sequence in which the I/O requests are serviced (by listing their cylinder numbers) for each of the following scheduling algorithms. (12)

- 4 19 20 2 10 21 7 1 26 3 9 11
- a) FIFO
- b) SSTF
- c) SCAN
- d) CSCAN

### Problem #5

Give the number of page faults for LRU, FIFO, OPT for the following reference string, for memories of size 3 and 4. (no partial credit...) (14)

5 4 3 2 5 4 6 5 4 3 2 6

Also give the number of page faults if the working set parameter is 3.5.

|      | 3 | 4 |
|------|---|---|
| FIFO |   |   |
| LRU  |   |   |
| OPT  |   |   |

Working Set:

#### Problem #6

The following questions are true/false. No partial credit will be given for missing answers. The questions you answer will be graded (right-wrong). (44)

\_\_\_a. According to the "fast file system for unix" paper, the randomization of disk blocks over the disk

### CS162, Midterm #2, Spring 1998

| surface, as files were created and deleted, lead to a drop in read bandwidth by more than a factor of five, |
|-------------------------------------------------------------------------------------------------------------|
| compared to a 'new' file system.                                                                            |
| b. A page frame is a fixed size portion of a process's address space.                                       |
| c. A page fault is a type of interrupt.                                                                     |
| d. Internal fragmentation is a problem for segmentation (as implemented without paging).                    |
| e. The STBR points to the page table for a process.                                                         |
| f. In the absence of paging, segments cannot exceed the physical memory size.                               |
| g. A plausible MTBF for a disk is 30,000 days.                                                              |
| h. In the absence of paging, the sum of the sizes of all segments cannot exceed the physical memory size.   |
| i. The 'memory map' is another name for the page table.                                                     |
| j. Putting the user process page tables in the OS virtual memory avoids having to do a two step translation |
| from virtual address to real address.                                                                       |
| k. When a page table is implemented as a hash table, it is called "an indirect page table".                 |
| l. One solution to the problem of I/O buffers that span virtual addresses which map to non-contiguous       |
| page frames is to prevent those pages from being paged out during I/O.                                      |
| m. "ATC" and "DLAT" are synonyms for "TLB" (depending on which manufacturer we are considering.)            |
| n. The set in the TLB is typically selected using the high order virtual address bits.                      |
| o. 'Working set restoration' is a page placement algorithm.                                                 |
| p. MIN and LRU are both stack algorithms.                                                                   |
| q. The clock algorithm is also called "FINUFO".                                                             |
| r. A plausible power dissipation for a disk is 3 watts.                                                     |
| s. A compact disk can hold more data than a twelve inch reel of 9-track tape.                               |
| t. There are current disks that spin at approximately 5000rps.                                              |
| u. A unix i-node has the file name in it.                                                                   |
| v. A unix i-node has a field showing the number of bytes in the file.                                       |
|                                                                                                             |

Posted by HKN (Electrical Engineering and Computer Science Honor Society)
University of California at Berkeley
If you have any questions about these online exams
please contact <a href="mailto:examfile@hkn.eecs.berkeley.edu">examfile@hkn.eecs.berkeley.edu</a>.

Problem #6 2