

University of California, Berkeley
College of Engineering

Computer Science Division: EECS

Summer 2019

Jack Kolb

Midterm I
July 18​th​, 2019

CS162: Operating Systems and Systems Programming

Your Name:

SID AND 162 Login
(e.g. s042):

TA Name:

Discussion Section
Time:

General Information:
This is a ​closed book exam. You are allowed 1 page of handwritten notes (both sides). You have
two (2) hours to complete as much of the exam as possible. Make sure to read all of the questions
first, as some of the questions are substantially more time consuming.

Write all of your answers directly on this paper. ​Make your answers as concise as possible. On
programming questions, we will be looking for performance as well as correctness, so think through
your answers carefully. If there is something about the questions that you believe is open to
interpretation, please ask us about it!

Problem Possible Score

1 22

2 12

3 16

4 16

5 16

Total 82

Page 1/17

CS 162 Summer 2019 Midterm July 18​th​, 2019

Problem 1: True/False [22 pts]
Please ​explain​ your answer in ​two sentences or fewer​ ​(Answers longer than this may not get
credit!). Also, answers without an explanation ​get no credit​.

Problem 1a[2pts]: ​The number of allocated kernel stacks is always equal to the number of allocated
userspace stacks.

⬜ ​True ​⬜ ​False
Explain​:

Problem 1b[2pts]: ​When using a simple “Base and Bound” scheme to enforce memory protection, the
CPU only sees virtual memory addresses.

⬜ ​True ​⬜ ​False
Explain​:

Problem 1c[2pts]: ​When fork returns a negative integer, an error has occurred that must be dealt with in
both the parent and child process.

⬜ ​True ​⬜ ​False
Explain​:

Problem 1d[2pts]: ​Switching between two threads within the same process is generally more efficient
than switching between two threads belonging to different processes.

⬜ ​True ​⬜ ​False
Explain​:

Page 2/17

CS 162 Summer 2019 Midterm July 18​th​, 2019

Problem 1e[2pts]: ​The Linux Completely Fair Scheduler always gives a shorter time slice to lower
priority threads.

⬜ ​True ​⬜ ​False
Explain​:

Problem 1f[2pts]: ​When using an atomic operation like ​test&set to implement a lock, we must apply
the ​test&set​ operation to check the lock’s state (either ​BUSY​ or ​FREE​) within a “spin loop.”

⬜ ​True ​⬜ ​False
Explain​:

Problem 1g[2pts]:​ ​Locks can prevent a thread from being preempted.

⬜ ​True ​⬜ ​False
Explain​:

Problem 1h[2pts]: ​If the Banker’s algorithm blocks a request for a resource, then granting that request
would have caused the system to deadlock.

⬜ ​True ​⬜ ​False
Explain​:

Problem 1i[2pts]: ​Synchronization primitives in base Pintos are implemented with ​test&set​.

⬜ ​True ​⬜ ​False
Explain​:

Page 3/17

CS 162 Summer 2019 Midterm July 18​th​, 2019

Problem 1j[2pts]: ​According to the End-to-End Principle, reliable transport should be implemented by the
two communications endpoints, not the network infrastructure.

⬜ ​True ​⬜ ​False
Explain​:

Problem 1k[2pts]: ​After a call to ​fork​, ​stdin​, ​stdout​, and ​stderr​ are reset to their default states in
the child process.

⬜ ​True ​⬜ ​False
Explain​:

Page 4/17

CS 162 Summer 2019 Midterm July 18​th​, 2019

Problem 2: Short Answer [12 pts]
Problem 2a[3pts]: ​What is the Interrupt Vector Table and what role does it play in protecting the kernel?

Problem 2b[3pts]: ​Why are device drivers divided into a top half and bottom half? What is each half
responsible for?

Problem 2c[3pts]: ​In Pintos, how would we allow a ​struct thread to be an element of two lists at the
same time?

Problem 2d[3pts]: ​Does First-Come First-Served or Round-Robin scheduling have lower overhead?
Explain.

Page 5/17

CS 162 Summer 2019 Midterm July 18​th​, 2019

Problem 3: Processes and Syscalls [16 pts]
Assume that we have the following two pieces of code (with all header files included):
write_and_print.c​, compiled to the binary file ​write_and_print
/* Takes a file descriptor (int) and a buffer (string) as input and

 writes the buffer into the provided file descriptor. ​ALSO prints
 out the buffer to stdout​. */

main.c​, compiled to the binary file ​main
int new_fd = -1;

void signal_handler(int sig) {

 dup2(new_fd, STDOUT_FILENO);

}

int main() {

 int hello_fd = open("greetings.txt", O_WRONLY | O_CREAT | O_TRUNC);

 char *child_buf = "Child hello!";

 char *parent_buf = "Parent howdy!";

 /* Assume char *arguments[] is correctly formed with ​./write_and_print
 hello_fd​, and ​child_buf​ as arguments */

 new_fd = dup(STDOUT_FILENO);

 dup2(hello_fd, STDOUT_FILENO);

 struct sigaction sa;

 sa.sa_flags = 0;

 sa.sa_handler = &signal_handler;

 sigemptyset(&sa.sa_mask);

 sigaction(SIGTERM, &sa, NULL);

 pid_t pid = fork();

 if (pid == 0) {

 execv(arguments[0], arguments);

 kill(getppid(), SIGTERM);

 } else {

 kill(pid, SIGTERM);

 wait(NULL);

 dprintf(hello_fd, "%s: %d\n", parent_buf, pid);

 printf("%s: %d\n", parent_buf, pid);

 }

 return 0;

}

Page 6/17

CS 162 Summer 2019 Midterm July 18​th​, 2019

List all possible outputs of the ​main program in each row of the table below (where one row corresponds to
one run of the program). You may not need all the tables provided. Assume that all system calls succeed
EXCEPT that ​execv()​ may possibly fail and assume that ​the child’s PID is 162​.

Standard Output greetings.txt

Page 7/17

CS 162 Summer 2019 Midterm July 18​th​, 2019

Problem 4: DeadLockList​ [16 pts]
Thanos needs to collect all 6 Infinity Locks. He creates a new structure called a ​locklist to manage the
locks he has acquired or still needs. Instead of just acquiring one lock, threads now have to acquire a series of
locks to ‘lock’ the ​locklist structure. Think of this as needing a collection of resources before being able
to perform your operations. For all questions, assume the ​locklist has already been initialized for you and
that we cannot preempt locks.

#DEFINE NUM_LOCKS 6

struct locklist {

lock my_locks[NUM_LOCKS];

int magic;

};

Problem 4a[2pts]: ​If all locks are released one after another with no other operations between them, does
the sequence they are released in matter with respect to deadlock? ​(Short Answer)

Problem 4b[2pts]: ​Does the lock release order matter with respect to performance? Explain. ​(Short Ans.)

Page 8/17

CS 162 Summer 2019 Midterm July 18​th​, 2019

Thanos is now trying to decide in what order to lock the Infinity Locks in the ​locklist​. Which of the
following definitions of ​lock_locklist can cause deadlock? Explain your answer for each selection. If
deadlock is possible, please provide an acquisition ordering in your explanation.

Problem 4c[2pts]: ​Lock acquisition code:
void lock_locklist(struct locklist *list) {

int start = 0;

for (int i = start; i < NUM_LOCKS; i++) {

int index = i;

lock_acquire (list->my_locks + index);

}

}

⬜ ​Can Cause Deadlock ​⬜ ​Cannot Cause Deadlock
Explain​:

Problem 4d[2pts]: ​Lock acquisition code:
void lock_locklist(struct locklist *list) {

int start = getpid() % NUM_LOCKS;

for (int i = start; i < start + NUM_LOCKS; i++) {

int index = i % NUM_LOCKS;

lock_acquire (list->my_locks + index);

}

}

⬜ ​Can Cause Deadlock ​⬜ ​Cannot Cause Deadlock
Explain​:

Page 9/17

CS 162 Summer 2019 Midterm July 18​th​, 2019

Problem 4e[2pts]: ​Lock acquisition code:
void lock_locklist(struct locklist *list) {

int start = NUM_LOCKS - 1;

for (int i = start; i >= 0; i--) {

int index = i;

lock_acquire (list->my_locks + index);

}

}

⬜ ​Can Cause Deadlock ​⬜ ​Cannot Cause Deadlock
Explain​:

Problem 4f[2pts]: ​Lock acquisition code:
void lock_locklist(struct locklist *list) {

int start = NUM_LOCKS/2;

for (int i = start; i < start + NUM_LOCKS; i++) {

int index = i % NUM_LOCKS;

lock_acquire (list->my_locks + index);

}

}

⬜ ​Can Cause Deadlock ​⬜ ​Cannot Cause Deadlock
Explain​:

Page 10/17

CS 162 Summer 2019 Midterm July 18​th​, 2019

Thinking about how much work it will take to lock the ​locklist structure, Thanos doesn’t always want to
go through the trouble of acquiring all the Infinity Locks. He decides to create the following function to
access the structure faster, acquiring just one lock and later releasing it. ​Assume all other threads execute
the code from problem 4c when using the ​locklist​.

void snap(struct locklist *list) {

lock_acquire (list->my_locks + OFFSET);

}

Problem 4g[2pts]: ​ ​If ​OFFSET = 0​, can ​snap​ cause deadlock to happen? If so, provide an example
execution order that leads to deadlock. If not, explain why deadlock is not possible. ​(Short Answer)

Problem 4h[2pts]: ​If ​OFFSET = NUM_LOCKS - 1​, can ​snap cause deadlock to happen? If so, provide
an example execution order that leads to deadlock. If not, explain why deadlock is not possible. ​(Short
Answer)

Page 11/17

CS 162 Summer 2019 Midterm July 18​th​, 2019

Problem 5: Just One TCP Connection ​[16 pts]
Bob is trying to build a system which helps people process jobs. After learning about how sockets work in
CS162, he wants to write a server program which listens on port 162 and takes jobs from clients. Each job is
represented by the following data structure:

struct Job {

 int job_number;

 char job_details[200];

 int result;

};

However, Bob thinks that having clients make a new connection for each job they want the server to process
seems to be an inefficient design because it consumes resources unnecessarily.

Problem 5a[2pts]: ​Briefly explain why establishing new connections consumes additional resources ​in
userspace.

Problem 5b[2pts]: ​Briefly explain why establishing new connections consumes additional resources ​in the
OS kernel.

Bob comes up with a scheme where the server just needs to maintain, for each client, a single connection
through which multiple jobs can be sent and through which processed jobs can be sent back. More
specifically, ​each connection is managed by one thread and ​whenever a new job is received, a new thread is
created to do the work in parallel and then send back the results via the same connection​.

Graphically, it looks like this:

Problem 5c[2pts]: ​Bob approaches you for help with implementing his design. He’s done most of the
coding but left out some critical functions. You are required to fill in the missing lines below. Note that you
might not need all the lines provided.

Page 12/17

CS 162 Summer 2019 Midterm July 18​th​, 2019

Assumptions:
1. When you call ​ssize_t read(int fd, void *buf, size_t count)​, it always reads ​count

bytes if there is data available. Otherwise, the call blocks.
2. When you call ​ssize_t write(int fd, const void *buf, size_t count)​, it always

writes ​count bytes successfully. You do not have to handle the case when ​read fails because of
client disconnection.

1. struct Job {
2. int job_number;
3. char job_details[200];
4. int result;
5. };
6.
7. struct Arg_struct{
8. Job *job;
9. int socket_fd;
10.}
11.
12.void do_work (Job *job) {
13. /* This function does the work and set the result back into job */
14. /* This function is compute-intensive */
15.}
16.
17.void *new_conn(void *arg) {
18. /* Handles a new client connection */
19. struct Job *new_job;
20. struct Arg_struct *new_args;
21. ssize_t bytes_read;
22.
23. int con_sockfd = (int) arg;
24. int pending_jobs = 0;
25. while (1) {
26.
27. new_job = ___
28.
29. bytes_read = __
30.
31. new_args = __
32.
33. new_args->job = new_job;
34. new_args->socket_fd = con_sockfd;
35. pthread_create(&thread, NULL, process_job, (void*) new_job);
36. }
37.}

Code Continues on Next Page...

Page 13/17

CS 162 Summer 2019 Midterm July 18​th​, 2019

38.void *process_job(void *arg) {
39. struct Arg_struct *new_args = (struct Arg_struct*) arg;
40.
41. /* Do the work by calling do_work() and send back response */
42.
43. ___
44.
45. ___
46.
47. ___
48.
49.
50. /* Free resources */
51.
52. ___
53.
54. ___
55.
56.}
57.
58./* Code Segment in main() */
59./* Assume bind() and listen() have been called */
60.
61.while (1) {
62. /* When a new client connects */
63.
64. con_sockfd = _________(lstn_sockfd, NULL, NULL);
65. pthread_create(&thread, NULL, new_conn, (void*) con_sockfd);
66.}
67.
68.close(lstn_sockfd);

After you are done writing the program, you realize that it doesn’t work. Clients are receiving gibberish
when they try to read each struct that is sent back. You show it to master systems programmer Jeff Dean,
who sees two problems in the code that cause the program to fail.

Firstly, the assumptions that ​read and ​write will always return ​count bytes do not hold. In fact, these sys
calls often read/write fewer than ​count​ bytes before returning.

Problem 5d[2pts]: ​Provide a reason why a ​write​ system call might write fewer than count bytes.

Page 14/17

CS 162 Summer 2019 Midterm July 18​th​, 2019

Problem 5e[2pts]: ​To solve this problem, Bob proposes writing a new function with the signature:
write_bob(int fd, const void* buf, size_t count)

write_bob ​makes use of ​write ​syscall ​in its implementation and makes sure that it always writes ​count
bytes before returns. Provide an implementation for ​write_bob​:
Hint​: If ​write​ ​returns 3, then 3 bytes are already written. You don't have to write them again.

void write_bob(int fd, const void *buf, size_t count) {
 char *buffer = (char*) buf;
 /* Your code below */

}

Problem 5f[3pts]: ​Jeff Dean points out a new problem with the code, because the threads share the same
connection socket. Bob proposes solving this problem with a mutex lock. List between which of the lines
above you need to add ​lock_acquire() and ​lock_release() with a global mutex to solve Jeff’s
problem. For instance, if you needed a ​lock_acquire() between lines 1 and 2, you would write (1, 2)
under ​lock_acquire()​ below. ​You may not need all six spaces.

lock_acquire()

(__________, __________) (__________, __________) (__________, __________)

lock_release()

(__________, __________) (__________, __________) (__________, __________)

Problem 5g[3pts]: Bob successfully builds the server above, but his computer is slow, and can only handle
up to 5 jobs being processed concurrently per connection. Jeff proposes a solution where a semaphore would
block new jobs from being processed if 5 other jobs are already being processed, and only allow new jobs to
start once an existing job is finished. Assume each thread has a semaphore initialized to 5 and that the line
numbers are as originally (ignore the lock operations above). List between which lines you need to add
sema_up()​ and ​sema_down()​ to allow only up to 5 jobs to be concurrently processed per connection.

sema_down()

(__________, __________) (__________, __________) (__________, __________)

sema_up()

(__________, __________) (__________, __________) (__________, __________)

Page 15/17

CS 162 Summer 2019 Midterm July 18​th​, 2019

[Scratch Page: Do not put answers here!]

Page 16/17

CS 162 Summer 2019 Midterm July 18​th​, 2019

[Scratch Page: Do not put answers here!]

Page 17/17

