

University of California, Berkeley
College of Engineering

Computer Science Division: EECS

Summer 2019

Jack Kolb

Midterm I SOLUTIONS
July 18​th​, 2019

CS162: Operating Systems and Systems Programming

Your Name:

SID AND 162 Login
(e.g. s042):

TA Name:

Discussion Section
Time:

General Information:
This is a ​closed book exam. You are allowed 1 page of handwritten notes (both sides). You have
two (2) hours to complete as much of the exam as possible. Make sure to read all of the questions
first, as some of the questions are substantially more time consuming.

Write all of your answers directly on this paper. ​Make your answers as concise as possible. On
programming questions, we will be looking for performance as well as correctness, so think through
your answers carefully. If there is something about the questions that you believe is open to
interpretation, please ask us about it!

Problem Possible Score

1 22

2 12

3 16

4 16

5 16

Total 82

Page 1/19

CS 162 Summer 2019 Midterm July 18​th​, 2019

Problem 1: True/False [22 pts]
Please ​explain​ your answer in ​two sentences or fewer​ ​(Answers longer than this may not get
credit!). Also, answers without an explanation ​get no credit​.

Problem 1a[2pts]: ​The number of allocated kernel stacks is always equal to the number of allocated
userspace stacks.

⬜ ​True ​X ​False
Explain​:
If a process is running a user-level threading library, then there can be more stacks in userspace (one per
user-level thread) than in the kernel (just on kernel thread for the process). Additionally, there are kernel
threads that perform tasks entirely within the operating system and do not require a userspace stack.

Problem 1b[2pts]: ​When using a simple “Base and Bound” scheme to enforce memory protection, the
CPU only sees virtual memory addresses.

⬜ ​True ​X ​False
Explain​:
This depends on how the Base and Bound scheme is implemented. If memory addresses are translated at run
time (adding the Base value to each address referenced before it is passed on to the memory controller), then
the CPU ​does​ only see virtual memory addresses. However, if instead a program’s instructions are relocated
at load time, then the CPU still uses physical addresses directly.

Problem 1c[2pts]: ​When fork returns a negative integer, an error has occurred that must be dealt with in
both the parent and child process.

⬜ ​True ​X ​False
Explain​:
When fork returns a negative integer, an error has occurred, but no child process is actually created.

Problem 1d[2pts]: ​Switching between two threads within the same process is generally more efficient
than switching between two threads belonging to different processes.

X ​True​ ​⬜ ​False
Explain​:
Switching between two threads always requires changing the execution context (registers, stack pointer,
program counter, etc.). For two threads belonging to different processes, the OS must also change the current
address space, which incurs an additional cost.

Page 2/19

CS 162 Summer 2019 Midterm July 18​th​, 2019

Problem 1e[2pts]: ​The Linux Completely Fair Scheduler always gives a shorter time slice to lower
priority threads.

⬜ ​True ​X ​False
Explain​:
Imagine we have three threads t1, t2, and t3 with weights 17, 2, and 1, with a latency target of 10ms and a
minimum granularity of 1ms.

1. t1 gets a time slice of 17/(17+ 2 + 1) * 10 = 8.5 ms.
2. t2 gets a time slice of 2/(17 + 2 + 1) * 10 = 1 ms.
3. t3 gets a time slice of 1/(17 + 2 + 1) * 10 = 0.5ms ​except​ ​now the minimum granularity takes effect,

and t3’s time slice becomes 1ms.

Problem 1f[2pts]: ​When using an atomic operation like ​test&set to implement a lock, we must apply
the ​test&set​ operation to check the lock’s state (either ​BUSY​ or ​FREE​) within a “spin loop.”

⬜ ​True ​X ​False
Explain​:
This implementation would force the waiting thread to spin wait while the lock owner is in the critical
section. Instead, we can use a ​guard​ variable in the lock’s implementation, as demonstrated in lecture. We
use ​test&set​ within a loop to check the value of ​guard​ rather than the lock’s state. This means one thread
will spin wait while any other thread is in the middle of ​acquire​ or ​release​, but sleep on a queue while
the lock’s owner is inside the critical section.

Problem 1g[2pts]:​ ​Locks can prevent a thread from being preempted.

⬜ ​True ​X ​False
Explain​:
Locks do not prevent a thread from being preempted. Threads can be interrupted during a critical section.
Locks only guarantee that the critical section is only entered by one thread at a time.

Problem 1h[2pts]: ​If the Banker’s algorithm blocks a request for a resource, then granting that request
would have caused the system to deadlock.

⬜ ​True ​X ​False
Explain​:
When the Banker’s algorithm blocks a request, the system would have entered an ​unsafe state​ in which
deadlock is possible, but not certain.

Page 3/19

CS 162 Summer 2019 Midterm July 18​th​, 2019

Problem 1i[2pts]: ​Synchronization primitives in base Pintos are implemented with ​test&set​.

⬜ ​True ​X ​False
Explain​:
The synchronization primitives in ​synch.c​ are implemented by disabling interrupts.

Problem 1j[2pts]: ​According to the End-to-End Principle, reliable transport should be implemented by the
two communications endpoints, not the network infrastructure.

X ​True​ ​⬜ ​False
Explain​:
The End-to-End Principle states that many features should be implemented by end hosts on a computer
network, rather than built in to the network infrastructure itself. Reliable transport is a good example of such
a feature, and we saw how TCP achieves this in lecture.

Problem 1k[2pts]: ​After a call to ​fork​, ​stdin​, ​stdout​, and ​stderr​ are reset to their default states in
the child process.

⬜ ​True ​X ​False
Explain​:
A newly-forked child process inherits the file descriptors of its parents, including the descriptors for ​stdin​,
stdout​, and ​stderr​.

Page 4/19

CS 162 Summer 2019 Midterm July 18​th​, 2019

Problem 2: Short Answer [12 pts]
Problem 2a[3pts]: ​What is the Interrupt Vector Table and what role does it play in protecting the kernel?
The Interrupt Vector Table is a mapping from interrupt type (expressed as a number) to the proper handler
for that interrupt (typically expressed as an address in memory to jump to). This ensures that we start
executing kernel code only at predefined entry points.

Problem 2b[3pts]: ​Why are device drivers divided into a top half and bottom half? What is each half
responsible for?

Device drivers execute on two separate occasions. First, the top half is invoked by the kernel’s IO subsystem
to issue a request to hardware, say to read or write data on a hard drive. Second, the bottom half is invoked
by an interrupt handler, after the hardware has fulfilled the original request. The bottom half does the work
required to copy data off of the device and back into kernel memory (this is usually not something we want
to do within the interrupt handler itself).

Problem 2c[3pts]: ​In Pintos, how would we allow a ​struct thread to be an element of two lists at the
same time?

We can allow this by adding a second ​struct list_elem​ member to ​struct thread​.

Problem 2d[3pts]: ​Does First-Come First-Served or Round-Robin scheduling have lower overhead?
Explain.

First-come first-served scheduling has lower overhead because it will require fewer context switches
between threads. Because FCFS is non-preemptive, a context switch will only occur when one thread
terminates and the scheduler needs to pick a new thread to run. Round-Robin scheduling is preemptive and
will context switch between threads whenever the running thread’s quantum has expired.

Page 5/19

CS 162 Summer 2019 Midterm July 18​th​, 2019

Problem 3: Processes and Syscalls [16 pts]
Assume that we have the following two pieces of code (with all header files included):
write_and_print.c​, compiled to the binary file ​write_and_print
/* Takes a file descriptor (int) and a buffer (string) as input and

 writes the buffer into the provided file descriptor. ​ALSO prints
 out the buffer to stdout​. */

main.c​, compiled to the binary file ​main
int new_fd = -1;

void signal_handler(int sig) {

 dup2(new_fd, STDOUT_FILENO);

}

int main() {

 int hello_fd = open("greetings.txt", O_WRONLY | O_CREAT | O_TRUNC);

 char *child_buf = "Child hello!";

 char *parent_buf = "Parent howdy!";

 /* Assume char *arguments[] is correctly formed with ​./write_and_print
 hello_fd​, and ​child_buf​ as arguments */

 new_fd = dup(STDOUT_FILENO);

 dup2(hello_fd, STDOUT_FILENO);

 struct sigaction sa;

 sa.sa_flags = 0;

 sa.sa_handler = &signal_handler;

 sigemptyset(&sa.sa_mask);

 sigaction(SIGTERM, &sa, NULL);

 pid_t pid = fork();

 if (pid == 0) {

 execv(arguments[0], arguments);

 kill(getppid(), SIGTERM);

 } else {

 kill(pid, SIGTERM);

 wait(NULL);

 dprintf(hello_fd, "%s: %d\n", parent_buf, pid);

 printf("%s: %d\n", parent_buf, pid);

 }

 return 0;

}

Page 6/19

CS 162 Summer 2019 Midterm July 18​th​, 2019

List all possible outputs of the ​main program in each row of the table below (where one row corresponds to
one run of the program). You may not need all the tables provided. Assume that all system calls succeed
EXCEPT that ​execv()​ may possibly fail and assume that ​the child’s PID is 162​.

Standard Output greetings.txt

Parent howdy!: 162

Parent howdy!: 162

Child hello!

Child hello!
Parent howdy!: 162
Parent howdy!: 162

Child hello!
Child hello!
Parent howdy!: 162
Parent howdy!: 162

Case 1: After the parent process forks, the child process fails to ​execv​, prompting the child process to send a
SIGTERM​ signal to the parent process. The parent process invokes ​signal_handler()​ upon returning,
restoring file descriptor 1 to ​stdout​. The parent process then prints ​“Parent howdy!: 162”​ to both
stdout​ and ​greetings.txt​.

Case 2: After the parent process forks, it continues execution and sends a ​SIGTERM​ signal to the child
process. The parent process calls ​wait​, context switching back to the child process. Upon executing, the
child process invokes ​signal_handler()​ and restores file descriptor 1 to ​stdout​. Thus, the child process
prints ​“Child hello!”​ to both ​stdout​ and ​greetings.txt​. When the parent process returns from

Page 7/19

CS 162 Summer 2019 Midterm July 18​th​, 2019

wait​, it prints ​“Parent howdy!: 162”​ to ​greetings.txt​ twice because its file descriptor 1 never got
restored to ​stdout​.

Case 3:After the parent process forks, the child process continues execution and writes ​“Child hello!”
twice to ​greetings.txt​. The child then exits, context switching back to the parent process. The parent
process sends a ​SIGTERM​ signal to zombie child process, which has no effect because the child process is no
longer running. The parent process calls ​wait​, returning right away. The parent process then prints ​“Parent
howdy!: 162”​ twice to ​greetings.txt​.

Common Mistakes:

● Students would often mix the output of ​greetings.txt​ with the output of ​stdout​.
● Some students would print the parent process’s greeting before the child process’s greeting, but the

wait​ call in the parent process prevents it from writing any output before the child process exits.

Page 8/19

CS 162 Summer 2019 Midterm July 18​th​, 2019

Problem 4: DeadLockList​ [16 pts]
Thanos needs to collect all 6 Infinity Locks. He creates a new structure called a ​locklist to manage the
locks he has acquired or still needs. Instead of just acquiring one lock, threads now have to acquire a series of
locks to ‘lock’ the ​locklist structure. Think of this as needing a collection of resources before being able
to perform your operations. For all questions, assume the ​locklist has already been initialized for you and
that we cannot preempt locks.

#DEFINE NUM_LOCKS 6

struct locklist {

lock my_locks[NUM_LOCKS];

int magic;

};

Problem 4a[2pts]: ​If all locks are released one after another with no other operations between them, does
the sequence they are released in matter with respect to deadlock? ​(Short Answer)

No. There is no situation where unlocking locks can lead to deadlock. The thread has ownership over the
locks already and is not waiting on a lock it does not own.

Problem 4b[2pts]: ​Does the lock release order matter with respect to performance? Explain. ​(Short Ans.)

Yes. Context switching is highly inefficient. If we unlock the locks in the same order we acquire them, there
is the possibility that a different thread (also trying to lock the locklist structure) starts to acquire some of the
locks before all are free. It would then partially acquire the locks in the locklist, but it wouldn’t be able to
finish. We would have to switch back to unlock the rest, which is very inefficient. If we unlocked it in
reverse order of acquisition, no threads will be unblocked before.

Page 9/19

CS 162 Summer 2019 Midterm July 18​th​, 2019

Thanos is now trying to decide in what order to lock the Infinity Locks in the ​locklist​. Which of the
following definitions of ​lock_locklist can cause deadlock? Explain your answer for each selection. If
deadlock is possible, please provide an acquisition ordering in your explanation.

Problem 4c[2pts]: ​Lock acquisition code:
void lock_locklist(struct locklist *list) {

int start = 0;

for (int i = start; i < NUM_LOCKS; i++) {

int index = i;

lock_acquire (list->my_locks + index);

}

}

⬜ ​Can Cause Deadlock ​X ​Cannot Cause Deadlock
Explain​:
This ​cannot​ cause deadlock. The preference order for each thread is the same (acquiring lower indices first),
so we will never cause deadlock.

Problem 4d[2pts]: ​Lock acquisition code:
void lock_locklist(struct locklist *list) {

int start = getpid() % NUM_LOCKS;

for (int i = start; i < start + NUM_LOCKS; i++) {

int index = i % NUM_LOCKS;

lock_acquire (list->my_locks + index);

}

}

X ​Can Cause Deadlock​ ​⬜ ​Cannot Cause Deadlock
Explain​:
Example: thread 1 acquires lock 1, thread 2 acquires lock 2. Thread 1 blocks waiting for lock 2. Thread 2
acquires locks 3-5, but blocks on acquiring lock 1.

This ​can​ cause deadlock. The preference order for each thread is different, so we acquire locks in different
orders and can end up with deadlock.

Page 10/19

CS 162 Summer 2019 Midterm July 18​th​, 2019

Problem 4e[2pts]: ​Lock acquisition code:
void lock_locklist(struct locklist *list) {

int start = NUM_LOCKS - 1;

for (int i = start; i >= 0; i--) {

int index = i;

lock_acquire (list->my_locks + index);

}

}

⬜ ​Can Cause Deadlock ​ ​X ​Cannot Cause Deadlock
Explain​:
This ​cannot​ cause deadlock. The preference order for each thread is the same (acquiring higher indices first),
so we will never cause deadlock.

Problem 4f[2pts]: ​Lock acquisition code:
void lock_locklist(struct locklist *list) {

int start = NUM_LOCKS/2;

for (int i = start; i < start + NUM_LOCKS; i++) {

int index = i % NUM_LOCKS;

lock_acquire (list->my_locks + index);

}

}

⬜ ​Can Cause Deadlock ​X ​Cannot Cause Deadlock
Explain​:

This ​cannot​ cause deadlock. The preference order for each thread is the same (starting from the middle
indices first), so we will never cause deadlock.

Page 11/19

CS 162 Summer 2019 Midterm July 18​th​, 2019

Thinking about how much work it will take to lock the ​locklist structure, Thanos doesn’t always want to
go through the trouble of acquiring all the Infinity Locks. He decides to create the following function to
access the structure faster, acquiring just one lock and later releasing it. ​Assume all other threads execute
the code from problem 4c when using the ​locklist​.

void snap(struct locklist *list) {

lock_acquire (list->my_locks + OFFSET);

}

Problem 4g[2pts]: ​ ​If ​OFFSET = 0​, can ​snap​ cause deadlock to happen? If so, provide an example
execution order that leads to deadlock. If not, explain why deadlock is not possible. ​(Short Answer)

Deadlock is not possible. Since ​snap​ is only acquiring one lock, its order of preference will always be
consistent with the other threads. This means having this function will not cause deadlock.

Problem 4h[2pts]: ​If ​OFFSET = NUM_LOCKS - 1​, can ​snap cause deadlock to happen? If so, provide
an example execution order that leads to deadlock. If not, explain why deadlock is not possible. ​(Short
Answer)

Same as the previous answer.

Page 12/19

CS 162 Summer 2019 Midterm July 18​th​, 2019

Problem 5: Just One TCP Connection ​[16 pts]
Bob is trying to build a system which helps people process jobs. After learning about how sockets work in
CS162, he wants to write a server program which listens on port 162 and takes jobs from clients. Each job is
represented by the following data structure:

struct Job {

 int job_number;

 char job_details[200];

 int result;

};

However, Bob thinks that having clients make a new connection for each job they want the server to process
seems to be an inefficient design because it consumes resources unnecessarily.

For 5a and 5b, full points are awarded to answers which have demonstrated not only correct conceptual
understandings but also clarity in the expression. Students need to both ​identify the resource constraints​ and
then elaborate on ​why establishing new connections will consume that scarce resource​.

Problem 5a[2pts]: ​Briefly explain why establishing new connections consumes additional resources ​in
userspace.

Acceptable answers include: More memory needed to manage the connection (e.g., ​int​ for the file
descriptor), more ​userspace​ buffers to store contents sent to or received from each connection, and
potentially more threads to work with connections concurrently, which consumes memory.

Common Mistakes:

1. Not clear about the scarce resource. e.g. Memory, CPU time, bandwidth, disk, ...
2. We do not consider the time taken to process a new user connection as a resource. You have to point

out clearly that the CPU time is the scarce resource here
3. When talking about buffer, answers need to highlight that they are referring to ​userspace​ buffer
4. TCP state management (e.g. ACK, retries, seq number …) is in the kernel space
5. “because we need to establish sockets” is too vague

Problem 5b[2pts]: ​Briefly explain why establishing new connections consumes additional resources ​in the
OS kernel.
Acceptable answers include: More elements in the process’s file descriptor table, more elements in the
OS-wide file description table, and more ​kernel​ buffers to store data sent to or received from the network
interface card.

Common Mistakes:

1. Unclear about the scarce resource. e.g. Memory, CPU time, bandwidth, disk, ...
2. Discussions of an “inode table” are not relevant, as this is a network socket.
3. Statements like “the OS needs to do more work” do not specify a scarce resource
4. Some answers mentioned additional interrupts but did not specify where they would come from

Page 13/19

CS 162 Summer 2019 Midterm July 18​th​, 2019

Bob comes up with a scheme where the server just needs to maintain, for each client, a single connection
through which multiple jobs can be sent and through which processed jobs can be sent back. More
specifically, ​each connection is managed by one thread and ​whenever a new job is received, a new thread is
created to do the work in parallel and then send back the results via the same connection​.

Graphically, it looks like this:

Problem 5c[2pts]: ​Bob approaches you for help with implementing his design. He’s done most of the
coding but left out some critical functions. You are required to fill in the missing lines below. Note that you
might not need all the lines provided.

Assumptions:

1. When you call ​ssize_t read(int fd, void *buf, size_t count)​, it always reads ​count
bytes if there is data available. Otherwise, the call blocks.

2. When you call ​ssize_t write(int fd, const void *buf, size_t count)​, it always
writes ​count bytes successfully. You do not have to handle the case when ​read fails because of
client disconnection.

1. struct Job {
2. int job_number;
3. char job_details[200];
4. int result;
5. };
6.
7. struct Arg_struct{
8. Job *job;
9. int socket_fd;
10.}
11.
12.void do_work (struct Job *job) {
13. /* This function does the work and set the result back into job */
14. /* This function is compute-intensive */
15.}
16.
17.void *new_conn(void *arg) {
18. /* Handles a new client connection */
19. struct Job *new_job;
20. struct Arg_struct *new_args;
21. ssize_t bytes_read;
22.
23. int con_sockfd = (int) arg;
24. while (1) {

Page 14/19

CS 162 Summer 2019 Midterm July 18​th​, 2019

25.
26. new_job = ​malloc(sizeof(struct Job));
27.
28. bytes_read = ​read(con_sockfd, new_job, sizeof(struct Job));
29.
30. new_args = ​malloc(sizeof(struct Arg_struct));
31.
32. new_args->job = new_job;
33. new_args->socket_fd = con_sockfd;
34. pthread_create(&thread, NULL, process_job, (void*) new_args);
35. }
36.}
37.void *process_job(void *arg) {
38. struct Arg_struct *new_args = (struct Arg_struct*) arg;
39.
40. /* Do the work by calling do_work() and send back response */
41.
42. ​do_work(new_args->job);
43.
44. ​write(new_args->socket_fd, new_args->job, sizeof(struct Job));
45.
46.
47.
48.
49. /* Free resources */
50.
51. ​free(new_args->job);
52.
53. ​free(new_args);
54.
55.}
56.
57./* Code Segment in main() */
58./* Assume bind() and listen() have been called */
59.
60.while (1) {
61. /* When a new client connects */
62.
63. con_sockfd = ​accept​(lstn_sockfd, NULL, NULL);
64. pthread_create(&thread, NULL, new_conn, (void*) con_sockfd);
65.}
66.
67.close(lstn_sockfd);

Common Mistakes:

1. For ​sizeof​, the argument must be ​struct Job​, not just ​Job​.
2. Many answers did not ​read​/​write​ the whole struct. For example, ​job_number​ is an important

field to return to the client as well. Since the client is submitting jobs asynchronously, the client
needs to generate a client-side id to keep track of the new jobs sent and completed jobs received. The
idea of client-side ids is important in RPC calls.

3. Students should read clearly what each function reads and returns.

Page 15/19

CS 162 Summer 2019 Midterm July 18​th​, 2019

After you are done writing the program, you realize that it doesn’t work. Clients are receiving gibberish
when they try to read each struct that is sent back. You show it to master systems programmer Jeff Dean,
who sees two problems in the code that cause the program to fail.

Firstly, the assumptions that ​read and ​write will always return ​count bytes do not hold. In fact, these sys
calls often read/write fewer than ​count​ bytes before returning.

Problem 5d[2pts]: ​Provide a reason why a ​write​ system call might write fewer than count bytes.
The ​write system call may be interrupted while in progress by a signal, in which case some of the requested
bytes will not be written.
Common Mistakes:

1. \x00​ does not stop the write call from continuing.
2. If the user buffer passed in as the argument for ​write is shorter than ​count​, this could lead to

access of an invalid portion of memory and cause the program to crash.

Problem 5e[2pts]: ​To solve this problem, Bob proposes writing a new function with the signature:

write_bob(int fd, const void* buf, size_t count)

write_bob ​makes use of ​write ​syscall ​in its implementation and makes sure that it always writes ​count
bytes before returns. Provide an implementation for ​write_bob​:
Hint​: If ​write​ ​returns 3, then 3 bytes are already written. You don't have to write them again.

void write_bob(int fd, const void *buf, size_t count) {
 char *buffer = (char*) buf;
 /* Your code below */
 while (bytes_written < count){
 bytes_written += write(fd, buffer + bytes_written, count – bytes_written)
 }

Common Mistakes:

1. Arithmetic on a ​void pointer is invalid. Therefore, ​buffer​, instead of ​buf​, should be used. To
make things simpler, we cast the pointer for you on the first line as a hint.

2. Making the ​write call twice doesn’t guarantee successful writing of the full buffer. Even repeating
write​ ten times may not work.

3. Do not ​write​ again whatever is already written.
4. This function returns ​void​, so there is no need to return an integer.
5. fflush​ and ​fsync​ are not relevant in this context.

Your temporary variable should use ​ssize_t​ instead of ​int​. Otherwise there could be a buffer overflow
vulnerability. However, we did not deduct points for this.

Page 16/19

CS 162 Summer 2019 Midterm July 18​th​, 2019

Problem 5f[3pts]: ​Jeff Dean points out a new problem with the code, because the threads share the same
connection socket. Bob proposes solving this problem with a mutex lock. List between which of the lines
above you need to add ​lock_acquire() and ​lock_release() with a global mutex to solve Jeff’s
problem. For instance, if you needed a ​lock_acquire() between lines 1 and 2, you would write (1, 2)
under ​lock_acquire()​ below. ​You may not need all six spaces.

lock_acquire()

(_____​43​_____, _____​44​_____) (__________, __________) (__________, __________)

lock_release()

(​_____44_____​, _____​45​_____) (__________, __________) (__________, __________)

You must acquire a lock before the call to ​write​ and release it after the ​write​.

We took away one point if any unnecessary locks were added. Locking around ​read​ is unnecessary since
only a single thread is reading from that connection. This, however, is not true for ​write​.

Problem 5g[3pts]: Bob successfully builds the server above, but his computer is slow, and can only handle
up to 5 jobs being processed concurrently per connection. Jeff proposes a solution where a semaphore would
block new jobs from being processed if 5 other jobs are already being processed, and only allow new jobs to
start once an existing job is finished. Assume each thread has a semaphore initialized to 5 and that the line
numbers are as originally (ignore the lock operations above). List between which lines you need to add
sema_up()​ and ​sema_down()​ to allow only up to 5 jobs to be concurrently processed per connection.

sema_down()

(_____​41​_____, ____​42​______) (__________, __________) (__________, __________)

sema_up()

(_____​42​_____, _____​43​_____) (__________, __________) (__________, __________)

Call ​sema_up​ before ​do_work​ and call ​sema_down​ after ​do_work​.

We took away one point if any unnecessary semaphores were added. If the unnecessary semaphores have
the potential to cause deadlock, the answer was not given any points.

Page 17/19

CS 162 Summer 2019 Midterm July 18​th​, 2019

[Scratch Page: Do not put answers here!]

Page 18/19

CS 162 Summer 2019 Midterm July 18​th​, 2019

[Scratch Page: Do not put answers here!]

Page 19/19

