Midterm I1I
(CS164, Spring 2004

April 13, 2004

o Please read all instructions (including these) carefully.
¢ Write your name, login, SID, and circle the section time.

e There are 8 pages in this exam and 4 questions, each with multiple parts. Some questions
span multiple pages. All questions have some easy parts and some hard parts. If you get
stuck on a question move on and come back to it later.

¢ You have 1 hour and 20 minutes to work on the exam.
e The exam is closed book, but you may refer to your two pages of handwritten notes.

e Please write your answers in the space provided on the exam, and clearly mark your solutions.
You may use the backs of the exam pages as scratch paper. Please do not use any additional
scratch paper.

e Solutions will be graded on correctness and clarity. Each problem has a relatively simple and
straightforward solution. We might deduct points if your solution is far more complicated
than necessary. Partial solutions will be graded for partial credit.

LOGIN:

NAME:

SID:

Circle the time of your section: Tue 3:00 Tue 4:00 Wed 10:00 Wed 11:00 Wed 1:00 Wed 2:00

| Problem | Max points | Points |
1 15
2 40
3 20
4 25

[TOTAL| 100 | |

1 Local Optimizations (15 points)

(a) Consider the following code:

N 2 N« M
N M X KN
+ * + *

2 o< N

Here are three optimized versions of this code. The modified portion of the code is shown
with a box around it.

N o2 Nw< M

I

HOKON
+
< N

Fono
]

il.

iii.

N € N4 ¥ N € N M
e ee wr e .i
NN

In each version of the code, we have applied one of the optimization techniques discussed in
lecture. Write to the right of each block of code what optimization was used.

(b) Consider the following code:

a:=y
x a+b
y x
z ax*xy
y y+x
Wisy+x

Apply copy propagation to this code. Write the resulting code to the right of the original
code.

()

i. The following block of code makes use of five variables: a, b, ¢, d, and e. However, we
have erased many of these variable references from the original program. In the right-
hand column, we provide the results of liveness analysis (i.e., the variables that are live
at each program point). Please fill in each blank with a variable so that the program
is consistent with the results of liveness analysis.

Please note that there are no dead instructions in this program. You will need this
information to fill in some of the blanks correctly!

Code Live Variables
{a, b, ¢}
= + a
{a, ¢, d}
= c -+
{c, d}
= + d

{e}

= 42

print

print

{}

2 Global Analysis (40 points)

The goal of this exercise is to design a global analysis for computing, for each program point and
for each variable z, a set of variables that have the same value as z at the given program point. We
use the names Fj,(z,s) and Foy(z,s) for the sets of variables discovered to be equal to = before
and after instruction s. We assume that these sets include z itself.

(a) Explain how can you optimize the instruction z := y if you know Ej;, for this instruction.

(b) Consider an instruction s with two predecessors p; and py. Write the formula for Ej,(z, s).

Consider the instruction s; of the form z := y.

(c) Assuming that E;n(y,s1) = {y, z,w}, what are Epy(z,s1) and Eoyu(y, 51)?

(d) Assuming that E;n(v,s;) = {v,2,z}, what is Ey,(v,51) (v and 2z are some variables other
than z or y)?

(e) Write the value E,y;(x,s1) as a function of E;,.

(f) Write the value of Egyt(v,s;) (v is a variable other than z or y) as a function of E;,.

(g) What are the values of E that play the same role as # and * from the constant propagation
analysis from the lecture?

(h) Is the computation of FE a forward or backward analysis?

(i) How many different values can Eoy(z, s) take, assuming that the program has T variables?

() Explain why this global analysis will terminate. What is the maximum number of steps that
this analysis will take, for a program with N instructions and T temporary variables? We
consider one step to be the update of one of the E,,; values.

(k) Is there a code fragment with a program point where z and y have different values on some
execution, yet this analysis discovers that they are equal? Explain your answer, and show a
code example if there is one.

(1) Is there a code fragment with a program point where = and y always have the same value, yet

this analysis does not discover that they are equal? Explain your answer, and show a code
example if there is one.

3 Typing and Operational Semantics (20 points)
Cool has a let construct with the following typing and operational semantics:

SO,S,El‘ €1 :’Ul,Sl

O,M,Cle:T l1 = newloc(Sy)

T <T So = Sivy1/li]

OlTy/z),M,CFey:Tp 50,52, E[l1/z] F €3 : v9, S3
O,M,Ctrletz:Ty e iney: Th 50,5, EFletz + e; iney : v9,S3

Note that the static type of the initializer (T7) can be a subtype of the declared variable type
(Tp). Now we introduce a let_dynamic construct that is more flexible: the initializer’s dvnamic
type is checked at run-time to be conforming to the declared type. If the value of the initializer is
void or if the conformance check fails then a run-time error occurs (similar to when a dispatch on
void is attempted). For example, the following two Cool expressions are both well-typed and run
without an error assuming that B is a subtype of A:

let_dynamic x : A <- (let y : B <- new B in y) in ...
let_dynamic x : B <- (let y : A <- new B in y) in ...

(a) Consider the expression let_dynamic = : Ty < e; in e;. Assuming that this construct
evaluates without error, write down the relationship that must exist between the dynamic
type of the result of el (call that D;) and Tp.

(b) Using as a reference the typing rule for let, fill in the missing parts of the typing rule for
let_dynamic:

O,M,CF let dynamic z: Ty +—e; iney :

(c) And now fill in the missing parts of the operational semantic rule for 1et_dynamic. The rule
must express the necessary run-time checks but need not consider what happens if the check
fails.

$0,5,EF let dynamic z: Tp < €; ines :

(d) Consider again the expression let_dynamic z : Ty + e; in e;. What relationship must exist
between the static type of the initializer expression (call that T7) and T, such that there is
any chance that the let_dynamic executes without a run-time error?

(e) Consider T1 defined as in the previous point. Is there a static condition between T, and
T; that determines in advance whether let_dynamic will execute without a run-time error?
Write the condition and argue why it has the required effect, or argue that there is no such
condition.

4 Short Answers (25 points)

(a) Give an example of an error in a Cool expression that can be detected during semantic analysis
but cannot be detected during parsing.

(b) What does “flow sensitive property” mean?

(c) Is liveness analysis a forward or backward analysis?

(d) Is it possible to design a program analysis for Cool that terminates and identifies precisely

those attributes of type Int that have only positive values throughout the execution of a
program? Justify your answer.

(e) Why is the following claim false: “Copy propagation is useless because the resulting code is
Jjust as large and performs just as many operations as the original code”?

(f) Consider the basic block containing the instructions “x := a + b” and “y := a + b” separated
by some other instructions. Assuming that this block is not in single assignment form, what

restrictions must be placed on the code separating the two instructions to allow common
subexpression elimination on the second instruction?

(g) We discussed in lecture cases when a control-flow graph cannot be written in single assignment
form. Show such an example.

