
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

CS 164 P. N. Hilfinger
Spring 2008

CS 164: Final Examination (with corrections)

Name: Login:

You have three hours to complete this test. Please put your login on each sheet, as
indicated, in case pages get separated. Answer all questions in the space provided on the
exam paper. Show all work (but be sure to indicate your answers clearly.) The exam is worth
a total of 50+ points (out of the total of 200), distributed as indicated on the individual
questions.

You may use any notes or books you please, but not computers, cell phones, etc.—anything
inanimate and unresponsive. We suggest that you read all questions before trying to answer
any of them and work first on those about which you feel most confident.

You should have 8 problems on 15 pages.

1. /10

2. /5

3. /5

4. /

5. /5

6. /10

7. /5

8. /10

TOT /50

1

Login: 2

1. [10 points] For each of the following possible modifications to a fully functional Pyth
system, tell which components of the compiler and run-time system would have to be modified:
lexical analyzer, parser and tree-generator, static semantic analyzer, code generator, standard
prelude, and run-time libraries. In each case, indicate a minimal set of components from this
list that would have to be changed, and indicate very briefly what change would be needed.
When you have a choice of two equal-sized sets of modules that might reasonably be changed,
choose the one that makes for the simplest change or whose modules appear earlier in the
list (e.g., prefer changing the lexical analyzer to the parser, if either change would be about
equally difficult).

a. When using character sets that support it, allow programmers to write ≤ in place of
<=, ≥ in place of >=, and → in place of ->.

b. Introduce a statement “until E: suite” that is just like the while construct, but loops
until E becomes true rather than false.

c. Cause a fatal error when an integer multiplication overflows.

Login: 3

d. Allow for statements to take multiple variables, as in full Python:

for x, y in L: print x, y

e. Allow a selection expression a.x even when a has not been given a type declaration,
as long as all assignments to a are from expressions whose static type is a class that
defines instance variable x.

Login: 4

2. [5 points] Consider the language described by this grammar:

expr →
term

| expr OP term
term →

primary
| term primary

primary →
ID

| ‘(’ expr ‘)’
| ‘λ’ VAR ‘.’ ‘(’ expr)’

Here, everything in single quotes or capital letters is a terminal symbol, and everything else
is a non-terminal. Fill in a recursive-descent parser for this language. The function next()

returns the lexer’s current token, and scan(T) checks that next() is T (causing an error if
not) and then reads the next token in the input (thus changing the value of next()). The
lexer returns the token EOF when it runs out of tokens.

The grammar as written is not quite suitable for direct conversion to recursive descent.
Feel free to add additional functions or take other steps to correct for this. We are interested
only in recognizing correct programs, not in translating them

def expr ():

def term ():

def primary ():

Continue on next page, if needed.

Login: 5

Continue here, if needed.

Login: 6

3. [5 points] Consider the following partial grammar for a typical imperative programming
language:

program → stmts { #1 }
stmts →

stmt ‘;’ { #2 }
| stmts stmt ‘;’ { #3 }

stmt →
if expr then stmts else stmts fi { #4 }

| for ID = INTLIT to INTLIT do stmts od { #5 }
| ID = expr { #6 }
| pass { #7 }

Assume that the nonterminal expr is defined elsewhere. The INTLIT token has an integer
as its semantic value (supplied by the lexer). As you might expect, the construct

for i = N1 to N2 do S od

repeatedly executes S, with i set in turn to each value between N1 and N2, inclusive. The
other kinds of statements have their obvious meanings.

The problem is to fill in the actions for this grammar so that they conservatively estimate
the maximum number of assignment statements that the program can execute (not including
assignments to the control variable of for), and make that the semantic value of the program
non-terminal. “Conservative” here means worst case, because your analysis will have no
knowledge of how if tests will go. For example, for the program

x = f(2);

for i = 1 to 10 do

y = 3;

if x > y then

y = y+x;

z = x;

else

y = y-1;

fi;

od;

would compute the value 31 for program (each pass through the the for executes at most
3 statements, the loop executes 10 times, and there is one other assignment before the loop
starts.

Fill in actions for the grammar on the next page to do this computation. Use any of the
usual notations for writing the semantic actions.

Login: 7

#1:

#2:

#3:

#4:

#5:

#6:

#7:

Login: 8

4. [1 point] If the intersection of a set, S, of open sets is not open, what can you say about
S?

5. [5 points] The Java Virtual Machine executes what is essentially an intermediate form
(called “Java bytecode”) that assumes a stack machine and an unlimited supply of registers
used for local variables and parameters. Java interpreters don’t “trust” these bytecode files,
since they can come from anywhere, and therefore perform certain consistency checks on them
before execution (a process called “bytecode verification”). One check has to do with stack
consistency. The stack must have a fixed, statically known size at each point in the program.
Therefore, intermediate code fragments such as the two examples below are illegal:

if x < y goto L1 L3:

push 3 if x > 0 goto L4

push 4 push 3

call(1) f push 4

goto L2 call(1) f

L1: goto L3

push 5 L4:

push 6

call(2) g

L2:

Here, push C means “push the constant C on the stack, ” and call(n) h means “call h,
popping the top n elements of the stack and passing them as its actual parameters, and
leaving the value on the stack upon return.” The left-hand example results in two different
possible stack sizes at L2, depending on whether the program branches to L1. The right-hand
example causes the stack size to increase by two on each iteration through the loop.

Describe how to use global flow analysis to check this property of a bytecode program.
That is, show a modification of one of the methods we used in lecture for constant propagation
or dead code elimination to solve the problem of computing the size of the stack at each point
in a procedure (where ‘⊤’, meaning inconsistent, is one of the possible “sizes”). We assume
that the stack has size 0 at the start of every procedure (that is, we give each procedure its
own private stack). We’re interested in a reasonably high-level description, so give sufficient
detail to convince us that you know what you’re talking about.

Continue on next page, if needed.

Login: 9

Continue your answer here, if needed.

Login: 10

6. [10 points] Consider the following derivation.

p

p / s

p / e

p / i < e >

p / i < i >

s / i < i >

d / i < i >

i f / i < i >

i < f > / i < i >

i < # f > / i < i >

i < # i > / i < i >

a. [1 point] Read top to bottom, is this a leftmost, rightmost, or reverse rightmost deriva-
tion?

b. [1 point] Which symbols are terminal symbols and which are non-terminals?

c. [2 points] What is the parse tree corresponding to this derivation?

Login: 11

d. [2 points] Reconstruct as much of the BNF grammar corresponding to this parse as
possible.

e. [1 point] Show an alternative parse tree for the same sentence, thus showing that the
grammar is ambiguous.

Login: 12

f. [2 points] Here are the entries for the states in a shift-reduce table for this grammar.
State 0 is the start state, and $end denotes the end of file.

State ’i’ ’/’ ’<’ ’>’ ’#’ $end p s d e f

0 s1 s2 s3 s4 s5

1 s6 r9 s7 r9 s8 r9 s9

2

3 r1 r1 r1 r1 r1 r1

4 r3 r3 r3 r3 r3 r3

5 r4 r4 r4 r4 r4 r4

6 r6 r6 r6 r6 r6 r6

7 s11 s12 s8 s14 s13

8 s6 s12 s8 s15

9 r5 r5 r5 r5 r5 r5

10 s1 s16 s4 s5

11 r6 r6 s17 r6 r6 r6

12 s6 s12 s8 s13

13 s18

14 s19

15 r8 r8 r8 r8 r8 r8

16 r2 r2 r2 r2 r2 r2

17 s20 s14

18 r7 r7 r7 r7 r7 r7

19 r10 r10 r10 r10 r10 r10

20 r9 r9 s17 r9 r9 r9

21

22 acc acc acc acc acc acc

Shift or goto entries are denoted sn and reducing by rule number k by rk; ‘acc’ means
“accept”. Show what symbols could be on the parsing stack that would cause state 19
to be the state of the top of the stack.

g. [1 point] Referring again to part f, what reduction must r10 be? After taking that
reduction, what will be the next top state on the stack?

Login: 13

7. [5 points] In Pyth, we have types List and Tuple whose elements have static type Any.
Suppose we wanted to be more specific, and have types List(T) and Tuple(T), meaning a
list (or tuple) of items each of which is a T (that is, has type T or some subtype of it).

a. Assume also that we introduce a construct (similar to one in Python) that allows Tuple-
valued expressions of this form:

(E for v in L)

meaning “the tuple whose elements are computed by evaluating expression E with
variable v set to each item in L (a sequence-valued expression) in turn.” The scope of
variable v is limited to this construct (it is independent of any v declared outside). For
example,

(2*i for i in xrange (0, 5)) == (0, 2, 4, 6, 8)

(x[1:] for x in ("the", "quick", "brown", "fox")) ==

("he", "uick", "rown", "ox")

The value of L may be Tuple(T) or List(T) (in which case, v will take on values of
type T), or Xrange (in which case v will take on integer (Int) values).

Provide typing rules for this construct, using the Prolog notation from lecture. We are
looking for rules for typeof(tuplegen(E, V, L), T, Env), where tuplegen(E, V, L)

is the AST for this type of expression. Use ≤ to denote the subtyping relation (as in
Int ≤ Any).

Your rules (combined with rules for other constructs in Pyth), should allow us to con-
clude that (2*i for i in xrange(0,5)) is both a Tuple(Int) and a Tuple(Any).

Login: 14

b. The typing rule

Tuple(X) ≤ Tuple(Y) :- X ≤ Y.

(where, again, ≤ is intended to mean “is a subtype of”) turns out to work without any
problem. However, the analogous rule

List(X) ≤ List(Y) :- X ≤ Y.

will cause problems. That is, we will eventually run into a little trouble if we allow an
assignment x = E whenever x is declared to have static type List(A) and expression E

has dynamic type List(B) where B is a subtype of A but not the same type. Why is
this? Why is it a problem for Lists, but not Tuples?

8. [10 points] For each of the following questions about the project, provide a short, succinct
answer.

a. What exactly might go wrong if you failed to initialize the space reserved to hold return
values to some valid Pyth value, such as None?

b. We required that all variables on the stack be initialized to valid Pyth values. As it turns
out, any values will do, not just None. So why not save time and initialize the entire
stack to None values, so that all the variables came pre-initialized? Since the other code
in Pyth programs always write only valid Pyth values, wouldn’t this guarantee that all
variables always have valid values without having to initialize each time? Assume that
we know an upper limit to the stack size and that we change Pyth semantics to say that
until we assign into a local variable, its value is some arbitrary (but valid) Pyth value.

Login: 15

c. How would I have to change the Pyth language if I did not want the code generator to
have to create any function descriptors?

d. If the lexical analyzer did not compute line-number and file information for each token,
what would be the effect on the Pyth compiler?

e. Give as many reasons as you can think of as to why we didn’t simply have the Pyth
parser module from Project 1 call the functions in Assembler directly in the action parts
of its rules.

