
CS170 Solutions to the First Midterm

1. (2 points each question) True or false? Circle the correct answer. No explanation
required. No points will be subtracted for incorrect answers, so guess all you want.

T The solution to the recurrence T (n) = 5T (n3 ) + n3 is �(n3).

The master theorem yields this at once. Or you could expand out the recurrence.

T The solution to the recurrence T (n) = 4T (n2 ) + n2 logn is �(n2 log2 n).

If you plug in this solution, you will �nd that it works. Alternatively, you could
directly use our two other techniques.

F dlogne! is O(n2) (Note: ! denotes factorial)
dlogne! consists of logn terms, most of which are considerably larger than four.
Therefore, it will be orders of magnitude bigger than 4logn = n2.

F nsin
�

2
n is O(

p
n)

As n varies, sin �
2n oscillates between �1 and 1. Thus the expression is in�nitely

often equal to n, which is not O(
p
n).

T The cubes of the 63rd roots of unity are the 21st roots of unity.

For the FFT, we needed the fact that the squares of the 2nth roots of unity are the
nth roots of unity. This follows by similar reasoning.

F If n is not prime, then for any positive integer a which is less than n and relatively
prime to n, an�1 6= 1 (mod n).

For instance, 1n�1 = 1 (mod n).

T Carmichael numbers are never prime.

Carmichael numbers constitute bad cases for the simple primality tester presented
in class.

T 2745 = 8285(mod55)

�(55) = 40 and 27 = 82 (mod 55), so 2745 = 275 (mod 55) and 8285 = 2785 =
275 (mod 55).

F There exist integers x and y such that 273x+ 42y = 7.

Three divides the expression on the left but not the number on the right.

T If f = O(g) then f2 = O(g2).

If limn!1
f(n)
g(n) � c for some constant c, then limn!1

f(n)2

g(n)2 � c2.

F If f = O(g) then 2f = O(2g).

For instance 2n = O(n) but 22n 6= O(2n).

2. (10 points) Alice wants to write a message that looks like it was digitally signed by
Bob. She notices that Bob's public RSA key is (17, 391). To what exponent should she
raise her message? (Answer of the form x�1mody gets half credit.)

Solution: When Bob signs a message, he computesMd mod n, where (d; n) is his private
key. Recall that if n = pq, then d = e�1 mod (p� 1)(q� 1), where (e; n) is Bob's public
key.

Now, notice that 391 = 17 �23, and so d = 17�1 mod (17�1)(23�1) = 17�1 mod 352. To
compute this, we use the Extended Euclid algorithm, with inputs 17 and 352. Because
17 and 352 are relatively prime, Euclid's will yield a pair (x; y) such that 17x+352y = 1.
In particular, we will have x = 145 and y = �7, hence 17 � 145 mod 352 = 1, and so
d = 17�1 mod 352 = 145. Sergey Io�e graded this problem.

1



3. (10 points) Give a brief description of an e�cient (polynomial time) algorithm for
computing a(b

c)(modp) for p prime. Brie
y explain why it is correct and why it is
polynomial.

Solution: For your general edi�cation, here is a much more detailed time analysis than
you needed to give:

If a is divisible by p, then ab
c

mod p = 0b
c

mod p = 0. In what follows we assume that p
doesn't divide a.

By the Fermat's Little Theorem, ap�1 mod p = 1. Therefore, ab
c

mod p = ab
cmod(p�1) mod

p.

Let us �rst compute bc mod (p � 1). This can be done e�ciently by using repeated
squaring. Recall from class that this will involve O(log c) multiplications of numbers
between 0 and p, and taking the results modulo p � 1. Each of these operations takes
O(log2 p) time. Thus, bc mod (p � 1) can be computed in O(log c � log2 p + log b � log p)
time (the extra log a � log p accounts for the initial computation of b mod (p� 1)).

Now, we need to compute ab
cmod(p�1) mod p. This can be done as above, using repeated

squaring. Notice that bc mod (p � 1) < p, thus the exponentiation will take O(log p �
log2 p+ log a � log p) time.

The total running time of this algorithm is O(log c � log2 p+ log b � log p+ log3 p+ log a �
log p) = O(n3), where n is the number of bits in the input.

Sergey Io�e graded this problem.

4. (10 points) Alice wishes to send 20 integers (expressed modulo p for some large prime
p) to Bob over a noisy channel. She knows that at most 12 of the integers she sends will
be corrupted during transmission.

� (5 points) Using the Berlekamp-Welch error correction scheme, Alice lets the 20
integers be the values of a polynomial at the points 1 through 20. What is the
minimum number of integers she should send to insure that Bob can recover the
original 20 integers?

Solution: Since there are 20 integers, a polynomial of degree d = 19 should be
used. The number of mistakes that we need to accommodate is k = 12. We saw in
class that if we send n integers then

k � n� (d+ 1)

2

whereby we need n � 44.

� (5 points) After Bob correctly recovers the polynomial, he loses two of the coe�-
cients. How many polynomials, as a function of p, are consistent with the informa-
tion that Bob now has?

Solution: Each of the two missing coe�cients can have any value in the range
0; : : : ; p� 1. Therefore there are p2 choices.

Sanjoy Dasgupta graded this problem.

5. (15 points) Recall Shamir's Secret Sharing scheme discussed in class.

2



� (3 points) Two street gangs, the Cool Coders and the Overloaded Operators, wish
to equally share the password to their CS170 account. Outline a simple secret
sharing scheme that insures that both parties must input their shares before they
can log in.
Solution: Let p(x) = ax + b be a polynomial of degree one with coe�cients in
GF (p), for p a large enough prime, say p = 23. Give p(1) to the Cool Coders
and p(2) to the Overloaded Operators. Let the secret be p(0). Since a degree one
polynomial is determined by its values at two distinct points, but not by its value
at one point, both parties have to input their shares before they can log in.

� (12 points) Now suppose that the members of the two groups do not trust their
fellow members either. What they need is a scheme whereby any three of the seven
Cool Coders together with any four of the nine Overloaded Operators would be
able to log in, yet any pair of sets that has fewer members from either side has no
information about the key |no matter how many members of the other side are
present. Devise a secret sharing scheme that works for these speci�cations.

Solution: Again, we will use polynomials with coe�cients in GF (23). Let q(x) be a
polynomial of degree two and give the ith member of the Cool Coders q(i); 1 � i � 7.
Note that since p = 23, this means that we evaluate q(x) at seven distinct points.
Then since a degree two polynomial is uniquely determined by its values at three
distinct points, any three of the Cool Coders can calculate q(0), but not less than
three. Let r(x) be a polynomial of degree three and give the jth member of the
Overloaded Operators r(j); 1 � j � 9. Again, since p is 23, every Overloaded
Operator gets r(x) evaluated at a di�erent point. Since a degree three polynomial is
uniquely determined by its values at four distinct points, any four of the Overloaded
Operators can calculate r(0), but not less than four. Then by the previous part
both q(0) and r(0) are needed to calculate the degree one polynomial p(x) that goes
through (1; q(0)) and (2; r(0)). So if we let the secret be p(0), we need three Cool
Coders and four Overloaded Operators to log in.

Kirsten Eisentraeger graded this problem.

6. (15 points)An array is said to have a majority element if more than half of its entries
are the same. Given an array, the task is to design an e�cient algorithm to tell whether
the array has a majority element, and, if so, to �nd that element.

� (2 points) Brie
y describe how this can be accomplished in linear time using
median-�nding.

Solution: If there is a majority element in the array it will be the median. Thus,
just run the linear time median �nding algorithm, and compare the result with all the
elements of the array (also linear time). If n

2 elements are the same as the median, the
median is a majority element. If not, there is none.

Suppose now that the elements of the array are not from some ordered domain like the
integers, and so there can be no comparisons of the form \is the ith element of the array
greater than the jth element of the array?" However you can answer questions of the
form: \Are the ith and jth elements of the array the same?" in constant time. Such
queries constitute the only way whereby you can access the array. (Think of the elements
of the array as GIF �les, say.) Notice that your solution above cannot be used now.

3



(13 points) Give a O(n logn) time divide-and-conquer algorithm for this task.

A. Brief description of the algorithm.

Solution: The following algorithm outputs the majority element if there is one, and
outputs FALSE otherwise:

Given an array N of size n, divide it into two arrays, A and B, of size n
2 .

Now given solutions to the two sub-problems, we merge them as follows:

If both A and B have majority elements and they're equal, then we output that element
as the majority element for N . If neither has a majority element, we output FALSE.
If only one of the sub-arrays has a majority element, or if they have di�erent majority
elements, we compare it/them to each of the elements of N in turn, keeping count of the
number of matches. If one of these \sub-majority" elements occurs more than n

2 times,
we output it as the majority element for N . If not, then we output FALSE.

B. Justi�cation of correctness.

If m is a majority element for N , it must necessarily be a majority element for at least
one of A,B.

C. Running time and justi�cation.

Merging subproblems involves at most 2n+ 1 comparisons. Thus, our recurrence is

T (n) = 2T (
n

2
) + O(n)

which yields a running time of O(n logn) by the Master theorem.

Sara Robinson graded this problem.

Grading criteria: If you showed you understood divide-and-conquer but didn't give a
correct merge you got 2-4 points. If you computed a correct running time for your
incorrect algorithm you got a few additional points.

Many of you gave a randomized algorithm, similar to median �nding, which has n2

worst-case time but linear expected time. I gave a lot of partial credit for this answer
(depending on the clarity of the explanation) although it's not a divide-and-conquer
algorithm.

An algorithm no better than doing all possible comparisons in n2 time got 0 points.

Extra Credit: Give a linear time algorithm for this task.

(Note: No partial credit. Attempt this problem only if you have time to spare.)

Solution: Create a stack and push a1, the �rst value of the array, onto it. Now for
each position 1 < i � n of the array, compare ai with the top element of the stack, t. If
ai = t, then push ai onto the stack and increment i. If ai 6= t, then increment i and pop
t o� the stack.

At the end, If the stack is empty, output FALSE. If not, then output the top element of
the stack.

Sara Robinson graded this problem.

4


