CS172, Luca Trevisan, Fall 2005, Midterm II, 75 minutes.

1. (35 Points) Prove that if M is Turing machine with q states, w is an input of length n, and M on input w moves right on all the first n + q + 1 steps, then M on input w does not halt.

CS172, Luca Trevisan, Fall 2005, Midterm II, 75 minutes.

2. (35 Points) We use $\ell(x)$ to denote the length of a string x, and K(x) to denote the smallest k such that there exists a pair $(\langle M \rangle, w)$ such that $\ell(\langle M \rangle, w) \le k$ and M on input w outputs x. We also define the language $R = \{ x : K(x) \ge \ell(x) \}$ of Kolmogorov random strings.

Prove that if $L \subseteq R$ is recognizable language, then L must contain a finite number of strings. (Note that, in particular, this implies that R is not recognizable.)

[Hint: prove that if $L \subseteq R$ is recognizable and infinite, then there is algorithm that on input an integer n outputs a string in R of length at least n, and then prove that this leads to a contradiction.]

CS172, Luca Trevisan, Fall 2005, Midterm II, 75 minutes.

3. (30 Points) Prove that if A, B are two languages in NP, then $A \cup B$ and $A \cap B$ are also in NP.