CS-174 Combinatorics and Discrete Probability, Fall 98
Solutions for Sample Midterm 2

The number of primes < k is 7(k) ~ ﬁ, so the probability is w(k)/k ~ 1/Ink.

(a) 1/3
(b) 1/(3%) =1/9.
(a) The probability of error is < 1 — 1/n; we want to reduce it to 1/e. If we do T trials then the probability

of getting a “no” on every one when the answer is in fact “yes” is < (1 — 1/n). If we choose T' = n, then
we get (1 —1/n)" ~e~ L.

(b) We need to reduce the probability of error from 1/e to 1/(e!%?), so we do 100 trials of the boosted
algorithm in (a), or 1007 trials of the original algorithm.

The probability that the first clause is not satisfied is Pr[zy = x5 = 0] = 1/4, so it is satisfied with probability
3/4. Similarly, the second and third clauses are satisfied with probabilities 1/2 and 3/4, respectively. Thus
the answer is E(X; + X2+ X3) = E(X1) + E(X2) + E(X3) = 3/4+1/24 3/4 = 2, where X; is the indicator
random variable for satisfying the ¢th clause.

S.—E(5,) Sp—npu

v/Var(s,) ovn

E(S,) = np and Var(S,) = no?. Thus the quantity in question is

The proportion of heads S, = (X1 + ...+ X,,)/n, where X; = 1 if ¢th toss was heads and 0 otherwise.
E(X;) = 1/2, and Var(X;) = 1/4, so E(S,) = (n/2)/n = 1/2 and Var(S,) = HVAJQ&Z = 4. Furthermore,
by the Central Limit Theorem, S,, is approximately Normal. Thus, the answer is the standard deviation of

Sy, which is y/Var(S,) = ﬁ
1

Since K is a 2-universal family, we have Pr[h(z) = h(y)] < T for h chosen u.a.r. from #. Since there are

|#| hash functions in total, the number of those with h(z) = h(y) must be |H| - Pr[h(z) = h(y)] < %
(a) E([S]) =n/4.

(b) For each edge e of G, Prle is inside S] = Pr[both endpoints of e are in S] = 1/4%, and since there are
2n edges in GG, we have E(X) =2n-1/16 = n/8.

(¢) S must be independent because otherwise there would be an edge e between a pair of vertices in
S’, which is impossible since one of e’s endpoints would have been removed. Since at most one vertex is
removed for each e inside S, we have E(number of removed vertices) < E(number of edges inside S) = n/8,

by part (b). So E(]5"]) = E(|S]) — E(number of removed vertices) > n/4 —n/8 = n/8.

(d) Since E(|S’|) > n/8, there must exist a set S* such that |S’| > n/8. Such a set S” must be independent
by construction.

(e) The algorithm: generate S’ as above and output it.
S’ is always an independent set. Let’s look at Pr[|S’| > n/16]. Since there are n people, the random
variable Y = n — |S’| is non-negative. Furthermore, E(Y) = n — E(|S’]) < 7Tn/8. Thus, Pr[|S’| < n/16] =

Pr[Y > n—n/16] < % < 1;2?356 = 14/15, where the second to last inequality is obtained by applying

Markov’s inequality to Y. Therefore, Pr[|S'| > n/16] = 1 — Pr[|S’| < n/16] > 1 — 1% = 1/15. So our
algorithm does, in fact, output an independent set S’ which has at least n/16 people with probability at
least 1/15.

10.

(a) A vertex v is isolated if and only if none of the n — 1 edges connecting it to the other vertices of G is
present. The probability of this is (1 — p)”~! since 1 — p is the probability for the absence of a particular
edge.

(b) X = 2?21 X; where X; = 1 if the ith vertex is isolated, and = 0 otherwise. Thus E(X) = 2?21 E(X;) =
n(l —p)n~L.

(¢) ME(X)=Inn+(n—1In(l—p) <lnn+ (n—1)(-p) = (Inn)(1 — um) Since p > ln—", we

n

have m — o0o. Further, 2= — 1 and so (1 — ”n;lm) — —o0. Since also Inn — oo, we have

In E(X) = —oo. Therefore, E(X) — 0.
(d) mE(X) =Inn+(n—-1)In(1l—=p)>Ilnn+ (n—1)(=2p) = (Inn)(1 — Q”H;lm). Since p < 21
— 0. Further, 2=1 — 1, and so (1 — 2"—_1%) — 1. Since also Inn — oo, we have

we have i n (on

P
Inn)/n
In E(X) = oo. Therefore, E(X) — .

(e) Ifp> ln" , we have by Markov’s inequality Pr[G has isolated vertex] < E(X) — 0. Therefore
Pr[G has 1solated vertex] — 0.

(f) If p< 22 we have Pr[G has no isolated vertices] = Pr[X = 0] < Pr[|X —E(X)| > |E(X)[] < Vargx) _,
0, so Pr[(has no isolated vertices] — 0 and Pr[G has isolated vertex] -1 —0= 1.
(g) We know that Var(X) = Var(> i, X;) = >, Var(X;) + Zi# Cov(X;, X;), where X; are the indicator
variables for each vertex, and Cov() denotes covariance (as in lecture notes). We have Var(X;) = (1 —
p)" (1 — (1 — p)»~1), since Pr[ith vertex is isolated] = (1 — p)"~'. Let us now compute Cov(X;, X;) =
E(X;X;)—E(X;)E(X;). We have, E(X;X;) = Pr[X; = X; = 1] = Pr[both ith and jth vertices are isolated].
For the latter event to occur, it must be that the edge between ¢ and j is missing, as are the 2(n — 2) edges
connecting ¢ or j to the remaining n — 2 vertices. Thus, Pr[X; = X; = 1] = (1 — p)t2(n=2) = (1 — p)?7-3,
and Cov(X;, X;) =(1—p)* 2 = (1 -p)" H2=(1-p)*" 31— (1-p) =p(l—p)*3

We can now write Var(X) = n- (1 —p)" 11 = (1 = p)"~ 1) + n(n — 1) - p(1 — p)?"~3, and Vare) _

E(x)2
n(1-p)" Y1-(1-p)" H4nn-1)p(1—p)?"—3 1-(1 n—l n_
(=p)"= ((nfz)l p))Qn (n=1)p(1=p) = ((1 p’;)n T n_(()Z; We know from (d) that E(X) = n(1—p)"~ —
oo when p < ln" . Therefore, the first term, i(l—p)% — 0, since the numerator is between 0 and 1. What
about the second term 5;21—11);1; 7 We have ”T — 1, and &= — 0 since p < ln" and ln” — 0. Therefore,
Vﬂ—l%O—I—LOIO, as n — oo, if p K IHT"

kE(x)2

(a) The polynomials @x and Qy will be identical if and only if their representations as products (z —
a1)...(# —ayp) are the same up to a permutation, that is, if and only if X =Y. Thus, we simply use the
Schwartz-Zippel algorithm to check whether Q@x — @y = 0. When X =Y | the polynomials will be identical
and the output will always be “yes”. If X # Y the output will be “yes” with probability at most d/|5],
where d = n 1s the degree of the polynomials and S is the set from which random values for z are drawn.
Taking a set with [S| > 2n, say S = {1,2,...,2n}, we will have a false “yes” with probability at most 1/2.

(b) The running time is O(n), since that’s how long it takes to evaluate @x (z) and Qy (z) for any value of
z (n subtractions and n — 1 multiplications).

(¢) The above algorithm is just comparing two numbers, Q@ x (r) and Qy (r), where z = r is a (random) value
for z. Each of these numbers has at most b = nlogm bits, because |@Qx (z)| < m™. So we can use the Alice and
Bob trick to reduce this to comparing two much smaller fingerprints, of only O(logb) = O(logn + loglogm)
bits. The fingerprint of a number is just the number mod p, where p is a prime chosen u.a.r. from {1,2, ... k},
where k = O(blogb); so p has only O(logb) bits. From our analysis in class, this gives only a small probability
of error in the comparison (and hence a small additional probability of error in the above algorithm). To
implement this scheme, we simply perform all the arithmetic mod p: this ensures that no intermediate
integers appearing in the calculation require more than O(logn + loglog m) bits, as required. (Note that the
input integers z; and y; actually require O(logm) bits; the question is slightly misleading here.)

Note that it is not enough to simply fingerprint the factors (z —;) and (z—y;). When they are multiplied
together, larger numbers may appear.

