Solutions for Sample Midterm 2

- 1. The number of primes $\leq k$ is $\pi(k) \sim \frac{k}{\ln k}$, so the probability is $\pi(k)/k \sim 1/\ln k$.
- **2.** (a) 1/3
 - **(b)** $1/(3^2) = 1/9$.
- 3. (a) The probability of error is $\leq 1 1/n$; we want to reduce it to 1/e. If we do T trials then the probability of getting a "no" on every one when the answer is in fact "yes" is $\leq (1 1/n)^T$. If we choose T = n, then we get $(1 1/n)^n \sim e^{-1}$.
 - (b) We need to reduce the probability of error from 1/e to $1/(e^{100})$, so we do 100 trials of the boosted algorithm in (a), or 100T trials of the original algorithm.
- 4. The probability that the first clause is not satisfied is $\Pr[x_1 = x_2 = 0] = 1/4$, so it is satisfied with probability 3/4. Similarly, the second and third clauses are satisfied with probabilities 1/2 and 3/4, respectively. Thus the answer is $E(X_1 + X_2 + X_3) = E(X_1) + E(X_2) + E(X_3) = 3/4 + 1/2 + 3/4 = 2$, where X_i is the indicator random variable for satisfying the *i*th clause.
- 5. $E(S_n) = n\mu$ and $Var(S_n) = n\sigma^2$. Thus the quantity in question is $\frac{S_n E(S_n)}{\sqrt{Var(S_n)}} = \frac{S_n n\mu}{\sigma\sqrt{n}}$.
- 6. The proportion of heads $S_n = (X_1 + \ldots + X_n)/n$, where $X_i = 1$ if ith toss was heads and 0 otherwise. $E(X_i) = 1/2$, and $Var(X_i) = 1/4$, so $E(S_n) = (n/2)/n = 1/2$ and $Var(S_n) = \frac{nVar(X_i)}{n^2} = \frac{1}{4n}$. Furthermore, by the Central Limit Theorem, S_n is approximately Normal. Thus, the answer is the standard deviation of S_n , which is $\sqrt{Var(S_n)} = \frac{1}{2\sqrt{n}}$.

Since \mathcal{H} is a 2-universal family, we have $\Pr[h(x) = h(y)] \leq \frac{1}{|T|}$ for h chosen u.a.r. from \mathcal{H} . Since there are $|\mathcal{H}|$ hash functions in total, the number of those with h(x) = h(y) must be $|\mathcal{H}| \cdot \Pr[h(x) = h(y)] \leq \frac{|\mathcal{H}|}{|T|}$.

- 8. (a) E(|S|) = n/4.
 - (b) For each edge e of G, $\Pr[e \text{ is inside } S] = \Pr[\text{both endpoints of } e \text{ are in } S] = 1/4^2$, and since there are 2n edges in G, we have $E(X) = 2n \cdot 1/16 = n/8$.
 - (c) S' must be independent because otherwise there would be an edge e between a pair of vertices in S', which is impossible since one of e's endpoints would have been removed. Since at most one vertex is removed for each e inside S, we have $E(\text{number of removed vertices}) \leq E(\text{number of edges inside } S) = n/8$, by part (b). So $E(|S'|) = E(|S|) E(\text{number of removed vertices}) \geq n/4 n/8 = n/8$.
 - (d) Since $E(|S'|) \ge n/8$, there must exist a set S' such that $|S'| \ge n/8$. Such a set S' must be independent by construction.
 - (e) The algorithm: generate S' as above and output it.

S' is always an independent set. Let's look at $\Pr[|S'| \geq n/16]$. Since there are n people, the random variable Y = n - |S'| is non-negative. Furthermore, $\mathrm{E}(Y) = n - \mathrm{E}(|S'|) \leq 7n/8$. Thus, $\Pr[|S'| < n/16] = \Pr[Y > n - n/16] \leq \frac{\mathrm{E}(Y)}{n - n/16} \leq \frac{7n/8}{15n/16} = 14/15$, where the second to last inequality is obtained by applying Markov's inequality to Y. Therefore, $\Pr[|S'| \geq n/16] = 1 - \Pr[|S'| < n/16] \geq 1 - \frac{14}{15} = 1/15$. So our algorithm does, in fact, output an independent set S' which has at least n/16 people with probability at least 1/15.

1

- 9. (a) A vertex v is isolated if and only if none of the n-1 edges connecting it to the other vertices of G is present. The probability of this is $(1-p)^{n-1}$ since 1-p is the probability for the absence of a particular edge.
 - (b) $X = \sum_{i=1}^{n} X_i$ where $X_i = 1$ if the *i*th vertex is isolated, and $X_i = 0$ otherwise. Thus $X_i = \sum_{i=1}^{n} X_i = 1$ if the *i*th vertex is isolated, and $X_i = 0$ otherwise.
 - (c) $\ln \mathrm{E}(X) = \ln n + (n-1)\ln(1-p) \leq \ln n + (n-1)(-p) = (\ln n)(1-\frac{n-1}{n}\frac{p}{(\ln n)/n})$. Since $p \gg \frac{\ln n}{n}$, we have $\frac{p}{(\ln n)/n} \to \infty$. Further, $\frac{n-1}{n} \to 1$, and so $(1-\frac{n-1}{n}\frac{p}{(\ln n)/n}) \to -\infty$. Since also $\ln n \to \infty$, we have $\ln \mathrm{E}(X) \to -\infty$. Therefore, $\mathrm{E}(X) \to 0$.
 - (d) $\ln \mathrm{E}(X) = \ln n + (n-1)\ln(1-p) \ge \ln n + (n-1)(-2p) = (\ln n)(1-2\frac{n-1}{n}\frac{p}{(\ln n)/n})$. Since $p \ll \frac{\ln n}{n}$, we have $\frac{p}{(\ln n)/n} \to 0$. Further, $\frac{n-1}{n} \to 1$, and so $(1-2\frac{n-1}{n}\frac{p}{(\ln n)/n}) \to 1$. Since also $\ln n \to \infty$, we have $\ln \mathrm{E}(X) \to \infty$. Therefore, $\mathrm{E}(X) \to \infty$.
 - (e) If $p \gg \frac{\ln n}{n}$, we have by Markov's inequality $\Pr[G \text{ has isolated vertex}] \leq \mathrm{E}(X) \to 0$. Therefore $\Pr[G \text{ has isolated vertex}] \to 0$.
 - (f) If $p \ll \frac{\ln n}{n}$, we have $\Pr[G \text{ has no isolated vertices}] = \Pr[X = 0] \leq \Pr[|X \mathrm{E}(X)| \geq |\mathrm{E}(X)|] \leq \frac{\mathrm{Var}(X)}{\mathrm{E}(X)^2} \to 0$, so $\Pr[G \text{ has no isolated vertices}] \to 0$ and $\Pr[G \text{ has isolated vertex}] \to 1 0 = 1$.
 - (g) We know that $\operatorname{Var}(X) = \operatorname{Var}(\sum_{i=1}^n X_i) = \sum_i \operatorname{Var}(X_i) + \sum_{i \neq j} \operatorname{Cov}(X_i, X_j)$, where X_i are the indicator variables for each vertex, and $\operatorname{Cov}()$ denotes covariance (as in lecture notes). We have $\operatorname{Var}(X_i) = (1-p)^{n-1}(1-(1-p)^{n-1})$, since $\operatorname{Pr}[i\text{th vertex is isolated}] = (1-p)^{n-1}$. Let us now compute $\operatorname{Cov}(X_i, X_j) = \operatorname{E}(X_i X_j) \operatorname{E}(X_i) \operatorname{E}(X_j)$. We have, $\operatorname{E}(X_i X_j) = \operatorname{Pr}[X_i = X_j = 1] = \operatorname{Pr}[\text{both } i\text{th and } j\text{th vertices are isolated}]$. For the latter event to occur, it must be that the edge between i and j is missing, as are the 2(n-2) edges connecting i or j to the remaining n-2 vertices. Thus, $\operatorname{Pr}[X_i = X_j = 1] = (1-p)^{1+2(n-2)} = (1-p)^{2n-3}$, and $\operatorname{Cov}(X_i, X_j) = (1-p)^{2n-3} ((1-p)^{n-1})^2 = (1-p)^{2n-3}(1-(1-p)) = p(1-p)^{2n-3}$.

We can now write $\text{Var}(X) = n \cdot (1-p)^{n-1}(1-(1-p)^{n-1}) + n(n-1) \cdot p(1-p)^{2n-3}$, and $\frac{\text{Var}(X)}{\text{E}(X)^2} = \frac{n(1-p)^{n-1}(1-(1-p)^{n-1}) + n(n-1)p(1-p)^{2n-3}}{n^2(1-p)^{2n-2}} = \frac{1-(1-p)^{n-1}}{n(1-p)^{n-1}} + \frac{(n-1)p}{n(1-p)}$. We know from (d) that $\text{E}(X) = n(1-p)^{n-1} \to \infty$ when $p \ll \frac{\ln n}{n}$. Therefore, the first term, $\frac{1-(1-p)^{n-1}}{n(1-p)^{n-1}} \to 0$, since the numerator is between 0 and 1. What about the second term $\frac{(n-1)p}{n(1-p)}$? We have $\frac{n-1}{n} \to 1$, and $\frac{p}{1-p} \to 0$ since $p \ll \frac{\ln n}{n}$ and $\frac{\ln n}{n} \to 0$. Therefore, $\frac{\text{Var}(X)}{\text{E}(X)^2} \to 0 + 1 \cdot 0 = 0$, as $n \to \infty$, if $p \ll \frac{\ln n}{n}$.

- 10. (a) The polynomials Q_X and Q_Y will be identical if and only if their representations as products $(z \alpha_1) \dots (z \alpha_n)$ are the same up to a permutation, that is, if and only if X = Y. Thus, we simply use the Schwartz-Zippel algorithm to check whether $Q_X Q_Y \equiv 0$. When X = Y, the polynomials will be identical and the output will always be "yes". If $X \neq Y$, the output will be "yes" with probability at most d/|S|, where d = n is the degree of the polynomials and S is the set from which random values for z are drawn. Taking a set with $|S| \geq 2n$, say $S = \{1, 2, \dots, 2n\}$, we will have a false "yes" with probability at most 1/2.
 - (b) The running time is O(n), since that's how long it takes to evaluate $Q_X(z)$ and $Q_Y(z)$ for any value of z (n subtractions and n-1 multiplications).
 - (c) The above algorithm is just comparing two numbers, $Q_X(r)$ and $Q_Y(r)$, where z=r is a (random) value for z. Each of these numbers has at most $b=n\log m$ bits, because $|Q_X(z)|\leq m^n$. So we can use the Alice and Bob trick to reduce this to comparing two much smaller fingerprints, of only $O(\log b)=O(\log n+\log\log m)$ bits. The fingerprint of a number is just the number mod p, where p is a prime chosen u.a.r. from $\{1,2,\ldots,k\}$, where $k=O(b\log b)$; so p has only $O(\log b)$ bits. From our analysis in class, this gives only a small probability of error in the comparison (and hence a small additional probability of error in the above algorithm). To implement this scheme, we simply perform all the arithmetic mod p: this ensures that no intermediate integers appearing in the calculation require more than $O(\log n + \log\log m)$ bits, as required. (Note that the input integers x_i and y_i actually require $O(\log m)$ bits; the question is slightly misleading here.)

Note that it is not enough to simply fingerprint the factors $(z-x_i)$ and $(z-y_i)$. When they are multiplied together, larger numbers may appear.