
CS-174 Combinatorics and Discrete Probability, Fall 98Solutions for Sample Midterm 2The number of primes � k is �(k) � kln k , so the probability is �(k)=k � 1= lnk.1. (a) 1=32. (b) 1=(32) = 1=9.(a) The probability of error is � 1� 1=n; we want to reduce it to 1=e. If we do T trials then the probability3. of getting a \no" on every one when the answer is in fact \yes" is � (1� 1=n)T . If we choose T = n, thenwe get (1� 1=n)n � e�1.(b) We need to reduce the probability of error from 1=e to 1=(e100), so we do 100 trials of the boostedalgorithm in (a), or 100T trials of the original algorithm.The probability that the �rst clause is not satis�ed is Pr[x1 = x2 = 0] = 1=4, so it is satis�ed with probability4. 3=4. Similarly, the second and third clauses are satis�ed with probabilities 1=2 and 3=4, respectively. Thusthe answer is E(X1 +X2 +X3) = E(X1) + E(X2) + E(X3) = 3=4+ 1=2+ 3=4 = 2, where Xi is the indicatorrandom variable for satisfying the ith clause.E(Sn) = n� and Var(Sn) = n�2. Thus the quantity in question is Sn�E(Sn)pVar(Sn) = Sn�n��pn .5. The proportion of heads Sn = (X1 + : : : + Xn)=n, where Xi = 1 if ith toss was heads and 0 otherwise.6. E(Xi) = 1=2, and Var(Xi) = 1=4, so E(Sn) = (n=2)=n = 1=2 and Var(Sn) = nVar(Xi)n2 = 14n . Furthermore,by the Central Limit Theorem, Sn is approximately Normal. Thus, the answer is the standard deviation ofSn, which is pVar(Sn) = 12pn .Since H is a 2-universal family, we have Pr[h(x) = h(y)] � 1jT j for h chosen u.a.r. from H. Since there arejHj hash functions in total, the number of those with h(x) = h(y) must be jHj � Pr[h(x) = h(y)] � jHjjT j .(a) E(jSj) = n=4.8. (b) For each edge e of G, Pr[e is inside S] = Pr[both endpoints of e are in S] = 1=42, and since there are2n edges in G, we have E(X) = 2n � 1=16 = n=8.(c) S0 must be independent because otherwise there would be an edge e between a pair of vertices inS0, which is impossible since one of e's endpoints would have been removed. Since at most one vertex isremoved for each e inside S, we have E(number of removed vertices) � E(number of edges inside S) = n=8,by part (b). So E(jS0j) = E(jSj) � E(number of removed vertices) � n=4� n=8 = n=8:(d) Since E(jS0j) � n=8, there must exist a set S0 such that jS0j � n=8. Such a set S0 must be independentby construction.(e) The algorithm: generate S0 as above and output it.S0 is always an independent set. Let's look at Pr[jS0j � n=16]. Since there are n people, the randomvariable Y = n � jS0j is non-negative. Furthermore, E(Y ) = n � E(jS0j) � 7n=8. Thus, Pr[jS0j < n=16] =Pr[Y > n� n=16] � E(Y )n�n=16 � 7n=815n=16 = 14=15, where the second to last inequality is obtained by applyingMarkov's inequality to Y . Therefore, Pr[jS0j � n=16] = 1 � Pr[jS0j < n=16] � 1 � 1415 = 1=15. So ouralgorithm does, in fact, output an independent set S0 which has at least n=16 people with probability atleast 1=15. 1



(a) A vertex v is isolated if and only if none of the n � 1 edges connecting it to the other vertices of G is9. present. The probability of this is (1 � p)n�1 since 1 � p is the probability for the absence of a particularedge.(b) X =Pni=1Xi where Xi = 1 if the ith vertex is isolated, and = 0 otherwise. Thus E(X) =Pni=1E(Xi) =n(1� p)n�1.(c) lnE(X) = lnn + (n � 1) ln(1 � p) � lnn + (n � 1)(�p) = (lnn)(1 � n�1n p(ln n)=n). Since p � ln nn , wehave p(ln n)=n ! 1. Further, n�1n ! 1, and so (1 � n�1n p(lnn)=n) ! �1. Since also lnn ! 1, we havelnE(X)!�1. Therefore, E(X)! 0.(d) ln E(X) = lnn + (n � 1) ln(1 � p) � lnn + (n � 1)(�2p) = (lnn)(1 � 2n�1n p(ln n)=n). Since p � lnnn ,we have p(ln n)=n ! 0. Further, n�1n ! 1, and so (1 � 2n�1n p(ln n)=n) ! 1. Since also lnn ! 1, we havelnE(X)!1. Therefore, E(X)!1.(e) If p� lnnn , we have by Markov's inequality Pr[G has isolated vertex] � E(X) ! 0. ThereforePr[G has isolated vertex]! 0.(f) If p� ln nn , we have Pr[G has no isolated vertices] = Pr[X = 0] � Pr[jX�E(X)j � jE(X)j] � Var(X)E(X)2 !0, so Pr[G has no isolated vertices]! 0 and Pr[G has isolated vertex]! 1� 0 = 1.(g) We know that Var(X) = Var(Pni=1Xi) =PiVar(Xi) +Pi 6=j Cov(Xi; Xj), where Xi are the indicatorvariables for each vertex, and Cov() denotes covariance (as in lecture notes). We have Var(Xi) = (1 �p)n�1(1 � (1 � p)n�1), since Pr[ith vertex is isolated] = (1 � p)n�1. Let us now compute Cov(Xi; Xj) =E(XiXj)�E(Xi)E(Xj). We have, E(XiXj) = Pr[Xi = Xj = 1] = Pr[both ith and jth vertices are isolated].For the latter event to occur, it must be that the edge between i and j is missing, as are the 2(n� 2) edgesconnecting i or j to the remaining n � 2 vertices. Thus, Pr[Xi = Xj = 1] = (1� p)1+2(n�2) = (1 � p)2n�3,and Cov(Xi; Xj) = (1 � p)2n�3 � ((1 � p)n�1)2 = (1 � p)2n�3(1� (1� p)) = p(1� p)2n�3.We can now write Var(X) = n � (1 � p)n�1(1 � (1 � p)n�1) + n(n � 1) � p(1 � p)2n�3, and Var(X)E(X)2 =n(1�p)n�1(1�(1�p)n�1)+n(n�1)p(1�p)2n�3n2(1�p)2n�2 = 1�(1�p)n�1n(1�p)n�1 + (n�1)pn(1�p) . We know from (d) that E(X) = n(1�p)n�1 !1 when p� ln nn . Therefore, the �rst term, 1�(1�p)n�1n(1�p)n�1 ! 0, since the numerator is between 0 and 1. Whatabout the second term (n�1)pn(1�p) ? We have n�1n ! 1, and p1�p ! 0 since p � ln nn and lnnn ! 0. Therefore,Var(X)E(X)2 ! 0 + 1 � 0 = 0, as n!1, if p� lnnn .(a) The polynomials QX and QY will be identical if and only if their representations as products (z �10. �1) : : : (z � �n) are the same up to a permutation, that is, if and only if X = Y . Thus, we simply use theSchwartz-Zippel algorithm to check whether QX �QY � 0. When X = Y , the polynomials will be identicaland the output will always be \yes". If X 6= Y , the output will be \yes" with probability at most d=jSj,where d = n is the degree of the polynomials and S is the set from which random values for z are drawn.Taking a set with jSj � 2n, say S = f1; 2; : : :; 2ng, we will have a false \yes" with probability at most 1/2.(b) The running time is O(n), since that's how long it takes to evaluate QX(z) and QY (z) for any value ofz (n subtractions and n � 1 multiplications).(c) The above algorithm is just comparing two numbers, QX(r) and QY (r), where z = r is a (random) valuefor z. Each of these numbers has at most b = n logm bits, because jQX(z)j � mn. So we can use the Alice andBob trick to reduce this to comparing two much smaller �ngerprints, of only O(log b) = O(logn+ log logm)bits. The �ngerprint of a number is just the number mod p, where p is a prime chosen u.a.r. from f1; 2; : : :; kg,where k = O(b log b); so p has only O(log b) bits. From our analysis in class, this gives only a small probabilityof error in the comparison (and hence a small additional probability of error in the above algorithm). Toimplement this scheme, we simply perform all the arithmetic mod p: this ensures that no intermediateintegers appearing in the calculation require more than O(logn+log logm) bits, as required. (Note that theinput integers xi and yi actually require O(logm) bits; the question is slightly misleading here.)Note that it is not enough to simply �ngerprint the factors (z�xi) and (z�yi). When they are multipliedtogether, larger numbers may appear. 2


