
CS 174: Combinatorics and Discrete Probability Spring 2015

Final
Tuesday, May 12, 2015

Notes: Please read all the questions carefully and ask for any clarifications. Some questions
are harder than others, so you may want to solve the easier questions first. If you are stuck
anywhere, move on to a different question and come back to where you were stuck later.

Please write clearly and legibly, and manage your space wisely!

Good Luck!

Name:

SID:

Score (for instructor use)

1.1 1.2 1.3

2.1 2.2 2.3

3.1 3.2 3.3

4.1 4.2 4.3
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Some Useful Definitions and Results
Markov’s Inequality. Let X be a random variable that assumes only nonnegative values.
Then, for all a > 0,

P (X ≥ a) ≤ E[X]

a
.

Chernoff Bound for Sums of Bernoullis. Let X1, . . . , Xn be independent Bernoulli
random variables with mean p. Let X =

∑n
i=1Xi. Then for any 0 < δ ≤ 1,

P (X ≥ (1 + δ)np) ≤ e−npδ
2/3.

Azuma-Hoeffding. Let X0, . . . , Xn be a martingale such that

Bk ≤ Xk −Xk−1 ≤ Bk + dk

for some constants dk and for some random variablesBk that may be functions ofX0, . . . , Xk−1.
Then, for all t ≥ 0 and for any λ > 0,

P (|Xt −X0| ≥ λ) ≤ 2e−2λ
2/(

∑t
k=1 d

2
k).

Martingales. A sequence of random variables Z0, Z1, . . . is a martingale with respect to the
sequence X0, X1, . . . if, for all n ≥ 0,

• Zn is a function of X0, X1, . . . , Xn,

• E[|Zn|] <∞, and

• E[Zn+1|X0, . . . , Xn] = Zn.

Stopping Times. A nonnegative, integer-valued random variable is a stopping time for the
sequence {Zn, n ≥ 0} if the event T = n depends only on the value of the random variables
Z0, Z1, . . . , Zn.

Markov Chains. The transition matrix P of a Markov chain {Xt} is defined so that
P (Xt+1 = j |Xt = i) = Pij. The row vector π is a stationary distribution if it is a probability
distribution and if πP = π.
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Problem 1.
Let G = (E, V ) be an undirected graph and suppose that |V | = 2n. Let S be a subset of
V chosen uniformly at random. Let ES be the subset of edges in E that have exactly one
vertex in S.

(a) Compute E[|ES|], the expected size of ES, in terms of |E|.

(b) Using the probabilistic method, prove that there exists some subgraph H = (E ′, V ′)
such that H is bipartite and |E ′| ≥ |E|/2. By subgraph, we mean that E ′ ⊆ E,
V ′ ⊆ V , and u, v ∈ V ′ whenever (u, v) ∈ E ′.

Now let T be a subset of V chosen uniformly at random from all subsets of size n. Let ET
be the subset of edges in E that have exactly one vertex in T .

(c) Compute E[|ET |]

(d) Argue that there exists some subgraph F = (E ′′, V ′′) such that F is bipartite and
|E ′′| ≥ |E|f(n) for some function f , where f(n) > 1/2.

(e) Compare the results from parts (b) and (d). Which one is better?

Answer here:
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Use this page if you need more space
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Problem 2.
Below, P and Q denote the transition matrices of two different Markov chains, and π and φ
denote distributions over states.

(a) Suppose that π and φ are both stationary distributions of P . Assuming λ ∈ [0, 1], is
λπ + (1− λ)φ also a stationary distribution of P?

(b) Suppose that π is a stationary distribution for both P and Q. Assuming λ ∈ [0, 1], is
π a stationary distribution of λP + (1− λ)Q?

(c) Is π a stationary distribution of PQ (the product of the matrices P and Q)?

Consider a Markov chain X0, X1, . . . with transition matrix P and unique stationary distri-
bution π. Suppose that the distribution of X0 is π.

(d) If n is a positive integer, what is the distribution of Xn.

(e) If T is a stopping time for the sequence X0, X1, . . ., is it necessarily the case that the
distribution of XT is π?

Answer here:
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Problem 3.
In the 0th generation, there is 1 amoeba. At every time step, each amoeba independently
either splits into two amoeba (with probability p) or dies (with probability 1 − p). Let Xn

be the number of amoeba alive at time n.

(a) Compute E[Xn|Xn−1].

(b) Compute E[Xn].

(c) We say that the population goes extinct if Xn = 0 for any n. Suppose that p < 1
2
. Show

that the population goes extinct with probability 1. Hint: use Markov’s inequality.

Answer here:
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Problem 4.
In this problem, let X0, X1, . . . and Z0, Z1, . . . be sequences of random variables.

(a) Show that if Z0, Z1, . . . is a martingale with respect to X0, X1, . . ., then it is also a
martingale with respect to itself.

(b) Suppose that Zn = f(Xn) for all n and for some function f . If T is a stopping time
with respect to the sequence X0, X1, . . ., is it necessarily a stopping time with respect
to the sequence Z0, Z1, . . .?

Answer here:
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Problem 5.
In the Bin Packing problem, we are given n real numbers x1, · · · , xn ∈ [0, 1] and asked to
partition the set {1, · · · , n} into k (non overlapping) sets S1, · · · , Sk such that

∑
i∈Sj

xi ≤ 1

for all j = 1, · · · , k, and such that k is as small as possible. We denote by B(X) the smallest
such k, with X = (xi)

n
i=1. The elements i ∈ Sj are thought of as being placed in bin j

which has capacity 1. Throughout the problem, we assume that x1, · · · , xn are generated
independently and uniformly at random on the interval [0, 1].

(a) Let µ = E[B(X)]. Prove that µ ≥ n/2.

(b) Use the bounded differences inequality (Azuma-Hoeffding) to prove that

Pr (B(X)− µ ≥ t) ≤ e−2t
2/n.

By taking t =
√
n log n, this implies that

B(X) ≤ n/2 +
√
n log n

with probability at least 1− 1/n2.

Now we describe a bin packing algorithm FOLD for which the expected number of bins

used is at most n/2 + c
√
n log n: let α = 1− 6

√
logn
n

.

1. Place each element xi ≥ α into a bin on its own. Suppose there are B1 such
elements.

2. Let N = n−B1 be the number of the items remaining to be placed.

3. Order the items so that x1 ≤ x2 ≤ · · · ≤ xN ≤ α.

4. For i = 1, 2, · · · , bN/2c
• Put xi and xN−i+1 into one bin if xi + xN−i+1 ≤ 1.

• Put xi and xN−i+1 into separate bins otherwise.

5. Put the item xbN/2c into a separate bin if N is odd.

(c) Prove that the number of bins used by this algorithm can be written as

B = B1 +N −
N/2∑
i=1

1{xi + xN−i+1 ≤ 1}.

(d) Compute E[B1].

(e) By using a tail bound on the binomial distribution, show that

Pr

(
xi ≥

i+
√

n
2

log n

n

)
≤ 1/n.
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(f) Assume that

Pr

(
xN−i+1 ≥

n− i−
√

n
2

log n

n

)
≤ 1/n

which can be proved in the same way. Show now that

Pr(xi + xN−i+1 > 1) ≤ 2/n.

(g) Assume that N is even (i.e. ignore step 5 of the algorithm). Show that

E[B] ≤ n/2 + 3
√
n log n+ 1.

Answer here:
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Problem 6.
Consider a Markov chain on n points S = {0, 1, . . . , n−1} lying in order on a circle. At each
step, the chain stays at the current point with probability 1/2 or moves to the next point in
the clockwise direction with probability 1/2.

(a) Find the stationary distribution π of this Markov chain.

(b) Define a Markov chain Zt = (Xt, Yt) on S×S. To update Zt, we consider two cases. If
Xt 6= Yt, then both Xt and Yt independently either stay the same or move to the next
point (each with probability 1/2). If Xt = Yt, then either they both stay the same
(with probability 1/2) or they both move to the next point (with probability 1/2).
Prove that this is a coupling of the original Markov chain.

(c) Let Dt = Xt − Yt mod n. Describe the transition probabilities P (Dt+1|Dt). You will
need to handle the cases Dt = 0 and Dt 6= 0 separately.

(d) Define the stopping time T to be the first t such that Dt = 0. You may use the fact
that E[T ] ≤ n2/2 (this was essentially shown in the Gambler’s ruin problem in the
homework). Prove that

P (T ≥ n2) ≤ 1

2
.

(e) Prove that for positive integer k,

P (T ≥ kn2) ≤
(

1

2

)k
.

(f) Show that for any x, y ∈ S and t ≥ n2 log2(1/ε) we have

P (Xt 6= Yt |X0 = x, Y0 = y) ≤ ε.

This implies (by the “coupling lemma”), that τ(ε) ≤ n2 log(1/ε), where τ(ε) is the
mixing time.

Answer here:
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