
Name___

- 1 -

UNIVERSITY OF CALIFORNIA
Department of EECS, Computer Science Division

CS186 Hellerstein/Olston
Fall 2006 Midterm Exam

Midterm Exam: Introduction to Database Systems
This exam has four problems and one extra credit question, worth different amounts of points each. Each
problem is made up of multiple questions. You should read through the exam quickly and plan your time-
management accordingly. Before beginning to answer a problem, be sure to read it carefully and to answer
all parts of every problem!

Good luck!

1. Relational Query Languages [20 points]

Recently, Bob the Builder coded up a Relational Query Language Translator (RQLT) and passed
it along to his lesser-known colleague, Ted the Software Test Engineer, for testing. Fortunately
for Ted, the RQLT is simple and only operates on a single schema:

Tool(tid, brand, cost)
Jobsite(location, compensation, task)
Toolbox(tbid, location) – location is a foreign key to Jobsite
Holds(tbid, tid) – tbid is a foreign key to Toolbox, tid is a foreign key to Tool.

a. (5 points) Ted sets the RQLT to translate the following SQL query to Relational Algebra:
SELECT T.tid
FROM Tool T, Holds H, Toolbox B, Jobsite J
WHERE T.tid = H.tid AND H.tbid = B.tbid
AND B.location = J.location AND J.task = ’Plumbing’

Which of the following would be an equivalent Relational Algebra query?

1. πtid(Tool Holds Toolbox σtask = ‘Plumbing’ (Jobsite))

2. πtid(σtask = ‘Plumbing’ (Tool (Holds Toolbox) Jobsite))

3. σtask = ‘Plumbing’ (πtid (Tool) Holds Toolbox Jobsite)

4. 1 and 2
5. 1, 2, and 3
6. None of the above

YOUR ANSWER HERE (1a): _________________

You must write your answers on the exam. Two pages of extra answer space have been provided at the
back in case you run out of space while answering. If you run out of space, be sure to make a “forward
reference” to the page number where your answer continues. Do not tear pages off of your exam!

Class Account: ________________________________

Name___

- 2 -

b. (10 points) Ted switches the RQLT to translate Relational Algebra into Relational

Calculus and passes in:

πtbid(Toolbox) – πtbid((πtbid(Toolbox) × πbrand(Tool))
 – πtbid,brand(Holds Tool))

Fill in the blanks to complete the equivalent Relational Calculus Query. Note: the
correct answer may not require all blanks to be filled in.

{ B1 | B ∈ Toolbox ___________ B.tbid = B1.tbid ___________

 ___________ T ∈ Tool

 (__________ H ∈ Holds (T.tid = H.tid __________ H.tbid = B.tbid)) }

c. (5 points) Ted thinks that he has found a bug in the RQLT. It translates the
following Relational Calculus query:

{ H1 | H ∈ Holds ∧ H1.tbid = H.tbid ∧
 ∀ Τ ∈ Tool ((H.tid = T.tid)
 ⇒ (T.brand = ‘Craftsman’ ∨ T.brand = ‘Channellock’)) }

into the following incorrect SQL query (marked with line numbers for the purpose
of this question):

1. SELECT H.tbid
2. FROM Tool T, Holds H
3. WHERE T.tid = H.tid AND T.brand = ‘Craftsman’
4. INTERSECT
5. SELECT H1.tbid
6. FROM Tool T1, Holds H1
7. WHERE T1.tid = H1.tid AND T1.brand = ‘Channellock’;

Fix this SQL query to match the Relational Calculus query by changing exactly
ONE line:

Answer: Change line _______ into:

__

Name___

- 3 -

2. B+ Trees [23 points]
Consider the following B+ tree index of order 1:

a. (3 points) Circle all nodes (not index entries, but entire nodes) in the above figure
that must be fetched to satisfy the query "Get all records with search key greater
than or equal to 7 and less than 15".

b. (15 points) Assume we modify the B+ tree by adding the following keys in the
following order: 20, 27, 18, 30, 19

In the answer-boxes below, each row refers to a key being inserted in order, and
each column asks if the insertion of that key results in a split of particular nodes.
Assume that when splitting up an odd number of entries, the left node gets one
more than the right. Place a check mark (✓) in each box whose answer is “Yes”.
Blank boxes will be interpreted as “No”. You may want to use the back of the
previous page for scratch space.

Key Leaf Node Split? Non-Leaf Split? Root Split?
20

27

18

30

19

c. (5 points) Suppose we were to insert all integers in the range 26 to 4112 inclusive

(i.e. 26, 27, 28 ... , 4111, 4112) into the tree in part (a), one at a time. At most how
many levels would the resulting B+-tree have? (Hint: You should not need to
draw a B+-tree to figure this out!)

 YOUR ANSWER HERE (2c): ____________________

Name___

- 4 -

3. Query Optimization [32 points]
Consider the following schema:

 Guitars (gid, brand, price)
 Players (pid, name, age)
 LastPlayed (gid, pid, date)

And the following query:

 SELECT P.name
 FROM Guitars G, Played P, LastPlayed L
 WHERE G.gid = L.gid AND P.pid = L.pid
 AND P.age < 25 AND G.brand = ‘Gibson’
 AND G.price > 3000;

In the schema, Guitars.gid is the primary key of Guitars, Players.pid is the primary key
of Players, and LastPlayed.gid and LastPlayed.pid are foreign keys referencing the
primary keys of Guitars and Players (respectively). Assume that the data is evenly
distributed, and that the following properties hold:

 Players.age ranges from 10 to 85
 Guitars.brand has 10 distinct values
 Guitars.price ranges from 1,000 to 5,000
 Guitars.gid has 1,000 distinct values
 Players.pid has 1,000 distinct values

a. (5 points) Compute the selectivity for each individual term in the WHERE clause.

You must fill in each blank below!

G.gid = L.gid : _________________________________

P.pid = L.pid : __________________________________

P.age < 25 : __________________________________

G.brand = ‘Gibson’ : __________________________________

G.price > 3000 : __________________________________

Name___

- 5 -

b. (5 points)
According to the
System R query
optimizer that we
studied, circle all
the following join
orders that would
be considered:

c. (12 points) Now consider the following. There is a B+ tree index on Guitars.gid –
it is unclustered and it uses Alternative 2 to represent data entries. Assume that,
on average, it takes 3 I/Os to retrieve a given data entry in a leaf of the index, and
that the following properties hold:

Guitars  40 bytes/tuple, 100 tuples/page, 10 pages
Players  80 bytes/tuple, 50 tuples/page, 20 pages
Lastplayed  20 bytes/tuple, 200 tuples/page, 100 pages

Assuming no buffering occurs, fill in the three blanks in the diagram below.

π P.name (on the fly)

σ G.brand = ‘Gibson’ ^ G.price > 3,000 (on the fly)

Guitars (B+tree on gid)

(on the fly) σ P.age < 25

Players (file scan)

L.gid = G.gid (index nested loops)

LastPlayed (file scan)

P.pid = L.pid

I/Os for this subtree:

__

Total I/Os:

tuples output here:

(page-oriented
nested loops)

Name___

- 6 -

d. (10 points) Consider the plan from part (c) again. For each of the following
changes to it, mark the line “Y” (yes) or “N” (no) depending on whether it could
have led to a further reduction in the number of I/Os. Consider each change
individually! Assume that any cost associated with setting up the described
change is not included in the execution cost, and that buffering is now being used.

_______ Pushing down the selection on G.brand and G.price below the join

_______ Creating a temporary file to store the results of the selection on P.age

_______ Having the index on Guitars.gid be clustered

_______ Projecting out P.age before the join

_______ Changing the first join to block-oriented nested loops join.

Name___

- 7 -

4. Query Execution [25 points]
You have been hired to advise a major hot-dog vending franchise called “Dunce
Dog” to tune their database server installation. They run a commercial DBMS called
Tentacle version 9y. One of the startup parameters in Tentacle is called
query_space; it tells Tentacle how many disk-blocks worth of RAM it should
allocate to use for sorting and hash joins. Note that memory used for query_space
is separate from the Tentacle buffer pool.

Dunce Dog is having problems running one of their monthly reporting queries. It
uses the following tables:

Store(sid, location, owner)
ItemsForSale(iid, name, description, cost, price)
DetailedSales(receiptno, iid, sid)

The query is:

SELECT S.sid, S.location, SUM(I.price – I.cost) AS PROFIT
 FROM Stores S, ItemsForSale I, DetailedSales D
 WHERE S.sid = D.sid and D.iid = I.iid
GROUP BY S.sid, S.location

You determine that the query plan that Tentacle chooses is:

Name___

- 8 -

a) (5 points) Tentacle performs aggressive projection – that is, it discards any
attributes that it does not need as soon as possible. For each edge in the query
plan, write down the smallest list of attributes that needs to be retained (i.e. not
discarded) on the corresponding dotted line.

b) (5 points) Assume that the result of the scan and projection of ItemsForSale fits in

1000 pages, and the result of the scan and projection of DetailedSales fits in
10,000 pages. Approximately how many blocks of query_space should
Tentacle need at minimum to perform the sort-merge join of ItemsForSale and
DetailedSales in two passes? Feel free to round up or down by as many as 2
blocks in any equations that you use, but if you do so, show your equations!

c) (5 points) Assume that the result of the first join fits in 2,500 pages, and the result

of the scan of Stores fits in 400 pages. Approximating and showing work as in
part (b), estimate the number of blocks of query_space that Tentacle should
need to perform the second join in the plan in two passes.

Name___

- 9 -

d) (5 points) How much memory should Tentacle’s MAGICAGG operator need to

perform GROUP BY and aggregation without I/O? Again, feel free to round up
or down by as many as 2 blocks.

e) (5 points) Using the variables b, c and d to represent your answers to parts (b), (c)

and (d) respectively, which of the following represents the minimum value of
query_space that your client should use:

a. SUM(b, c, d)

b. MAX(b, c, d)

c. MIN(sqrt(b), sqrt(c), d)

d. logquery_space MAX(b, c, d)

 YOUR ANSWER HERE (4e): ____________________

Name___

- 10 -

EXTRA CREDIT: The Disk Whisperer (10 points)

It’s exhausting being a disk drive, constantly seeking, scanning, transferring… Since you
are a sensitive Berkeley person, you are able to talk to your disk drive and it confides in
you about how tough life is.

Recently, your disk drive told you that it’s really tired of doing sort-merge joins. You
offered to let it do hash joins all the time, even when the optimizer used to choose sort-
merge join. Your disk responded, “Who cares – same stuff, different order.”

Explain why your disk drive said that.

Name___

- 11 -

Name___

- 12 -

