
 Name ____________________________

1

UNIVERISTY OF CALIFORNIA, BERKELEY
College of Engineering

Department of EECS, Computer Science Division
CS186 J. Hellerstein
Spring 2003 Final Exam

Final Exam: Introduction to Database Systems
This exam has seven problems, each worth a different amount of points. Each problem is
made up of multiple questions. You should read through the exam quickly and plan your
time-management accordingly. Before beginning to answer a question, be sure to read it
carefully and to answer all parts of every question! Please do not spend time
explaining your answers unless we explicitly ask that you do so. We will not be
giving extra or partial credit for explanations unless we ask for them.

Good luck!

You must write your answers on the exam. You also must write your name at the top of
every page, and you must turn in all the pages of the exam. Do not remove pages from
the stapled exam! Extra answer space is provided in case you run out of space while
answering. If you run out of space, be sure to make a “forward reference” to the page
number where your answer continues.

Class Account ____________________________Do not write in this space

 Name ____________________________

2

1. Recovery [20 points]
In this question we explore the interplay between buffer management and
recovery. We present four scenarios below. For each scenario, you must follow
the following guidelines:
— Choose a maximally efficient protocol!
— Among all protocols with the same level of efficiency, choose the simplest.

Each scenario corresponds to exactly one of the four quadrants in the chart at the
bottom of the page. Place the letter of each scenario (a, b, c, d) in the
appropriate quadrant. Note that while each letter goes in only one quadrant, it
is possible that some quadrants will have more or less than one letter in them! [5
points each]

a. Scenario: Traditional ARIES. You have been told to implement the
ARIES recovery protocol as discussed in class.

b. Scenario: Buffer Pool Bigger than Database. Modern servers ship with
as much as 32GB of RAM. Hence for many customers, their databases
will never be larger than available RAM. You have a startup company
that is designing a special-purpose DBMS for these customers.

c. Scenario: Before-Image Logging. In order to keep your logs more
compact, you store only the “before-image” of the data in update log
records, and not the “after-image”. (Recall that the before-image has the
state of the page before the update; the after-image would have also shown
the state of the page after the update.)

d. Scenario: Untrusted Buffer Manager. No matter how many times you
explain it, the engineers implementing the buffer manager cannot
understand the log manager. So you’re going to have to choose a protocol
that can handle any mix of page replacement decisions.

No Steal Steal

Force

 No Force

 Name ____________________________

3

2. ARIES [20 points]
Consider the following log where the DPT represents the Dirty Page Table and
TT represents the Transaction Table

LSN Contents prevLSN undonextLSN
10 Update T1 writes p1
20 Begin Checkpoint
30 End Checkpoint

DPT: (1,10)
TT: (T1, Running, 10)

40 Update: T1 writes p3 10
50 Insert: T2 writes p5
60 Update: T1 writes p3 40
70 Update: T2 writes p8 50
80 Abort: T1 60
90 CLR: T1 Undo p3 LSN 60 80 40
100 Commit: T2 70
110 End T2 100

CRASH, RESTART

Answer the following questions:
a. What is the smallest LSN accessed during the Analysis phase. [2 points]

b. Fill in the contents of the Dirty Page Table and the Transaction Table at the
end of the Analysis phase. (you may not need all the space we give you) [10
points]

PageID RecLSN

c. At which LSN does the Redo phase begin? [2 points]

d. What entries (specify only LSNs) do get undone as part of the Undo phase? [6
points]

XID Status LastLSN

 Name ____________________________

4

3. Functional Dependencies and Normalization [20 points]
Consider the relation schema R = (A, B, C, D, E, F) and the set of functional
dependencies F: A->B, A->C, BC->E, BC->D, E->F, BC->F

Note that in all the following, you will never have to compute F+, the closure of
F!

a. List the minimal candidate key(s) for R. Write ‘none’ if you think there
are no candidate keys. [2 points]

b. List the FDs in F that violate BCNF. (Hint: There are four) [4 points]

c. Is R in 3NF (yes or no)? [2 points]

d. Is F a minimal cover? [2 points]

(continued)

 Name ____________________________

5

e. Suppose we decompose R into the following tables:
R1 = (B, C, E)
R2 = (B, C, F)
R3 = (B, C, D) and
R4 = (A, B, C).
This decomposed schema is indeed in BCNF (you can trust us on this!)

Unfortunately, this decomposition is not dependency-preserving; in
particular, the dependency E->F cannot be checked on a single table. A
CHECK ASSERTION can be used to enforce E->F.

Complete the following SQL statement for this particular CHECK
ASSERTION needed to guarantee E->F. [8 points]

CREATE ASSERTION checkDep
CHECK (NOT EXISTS
(SELECT * FROM R1, R2

WHERE _______________________

GROUP BY _____________________

HAVING COUNT(__________________________)__________))

f. Why might the ASSERTION in (e) be expensive? [2 points]
 i. Updates to R1 and R2 are frequent
 ii. Inserts to R1 and R2 are frequent
 iii. Insertions to R2 are frequent; R1 rarely changes.
 iv. Reads to R1 and R2 are frequent
 v. (i) and (ii)
 vi. (i), (ii), (iii)
 vii. All of the above

Answer (choose one): ___________

 Name ____________________________

6

4. Database Tuning [14 points]
Consider the following BCNF relational

Apartment (aid, capacity)
GraduateStudent (SID, age, sex, dept, GPA, aid)

— GraduateStudent.aid is a foreign key referencing Apartment.
— There are very few “single” apartments (i.e. where capacity=1)
— 50% of the Graduate Students are males.

a. You are told that the following three queries are the most common. For
each of these queries, we have listed three different indexes as possible
access methods. Pick the access method that would benefit the query most
in terms of I/O performance. Assume that these queries occur much more
frequently than updates. [3 points each]

Query 1: List aids of apartments with capacity=1
 i. Clustered B+Tree index for Apartment on aid field
 ii. Unclustered B+Tree index for Apartment on capacity field
 iii. Clustered B+Tree index for Apartment on capacity field.

Answer (choose one): ___________

Query 2: List SIDs of male graduate students
 i. No indexes. Use a file scan on GraduateStudent.
 ii. Unclustered B+Tree index for GraduateStudent on sex
 iii. Clustered B+Tree index for GraduateStudent on SID

Answer (choose one): ___________

Query 3: List depts of graduate students staying in apartment aid=4.
 i. Clustered B+Tree index for GraduateStudent on aid
 ii. No indexes. Use a file scan on GraduateStudent table.
 iii. Unclustered B+Tree index for GraduateStudent on <aid, dept>

Answer (choose one): ___________

continued

 Name ____________________________

7

b. The database is still running very slowly even after you recommended the
right indexes in part (a)! A careful workload study reveals that in practice,
the following two transactions are extremely frequent (far more than any
other queries or updates):

- T1: Find the average age of all graduate students group by aid
- T2: Update the GPA of graduate student g (the value of g may be
different each time T2 is run)

Traces show that the above two queries resulted in concurrency control
bottlenecks, due to lock contention on the GraduateStudent table. Tuple
granularity locks are obtained.

The following solutions have been proposed to alleviate the problem.
Choose the single letter that gives the most correct options; if no correct
options are listed, choose (ix). [5 points]

 i. Vertically partition (i.e. decompose) the GraduateStudent table into
two separate tables such that (SID,age,aid) is in one table, and (SID,
sex, dept, GPA) is in another.

 ii. Horizontally partition the GraduateStudent table according to aid field.
Graduate Students who stay in even numbered apartments are stored in
a different table from those that are odd numbered.

 iii. Make use of page granularity locks
 iv. Use non-strict two-phase locking (2PL)
 v. Create an unclustered B+Tree index for GraduateStudent on <aid,

age>
 vi. Either (i) or (ii) would work
 vii. Either (i) or (v) would work
 viii. Either (iii) or (iv) would work
 ix. None of the above.

Answer (choose one): ___________

 Name ____________________________

8

5. Query Optimization [15 points]
Consider the following relational schema and SQL query:
Student (SID, DID, Enroll_Year, Nationality)
Department (DID, Name, Building_Num, Telephone, FID)
Finance (FID, Budget, Expenses, …)

SELECT D.Name, F.Budget
FROM Student S, Department D, Finance F
WHERE S.DID = D.DID and D.FID = F.FID AND
 D.Building_Num > 5 AND D.Building_Num <=10 AND

S.Enroll_Year = 2000 OR S.Enroll_Year = 2001;

Here are some statistics:
— Building Numbers range from 1 to 20 inclusive (i.e. 1 and 20 are both valid numbers).
— Each building has the same number of departments
— Students’ enrollment year (Student.Enroll_Year) ranges from 1997 to 2002, and is
distributed according to the following table:
1997 1998 1999 2000 2001 2002
5000 1400 2000 3000 7000 1600

— Number of Tuples (pages) per relation:
 - Student: 20000 (2000 pages)
 - Department: 100 (10 pages)
 - Finance: 100 (10 pages)

(continued)

 Name ____________________________

9

a) Consider the following query plan. Each of the leaf nodes is a sequential scan. Each
of the joins is a naïve nested loops join. In the three dotted boxes, write down the
expected number of tuples generated by the subtree below the associated tree edge.
In the two dotted ovals, write down the expected number of I/Os performed by the
associated join. (You can assume that projections are done as early as possible.) [12
points]

b) Would a query optimizer like the one we studied in class choose the following plan?
(Again, assume that projections are done as early as possible.) Briefly explain your
answer! [3 points]

 Name ____________________________

10

6. Concurrency control [16 points]
a) Consider the following modified definition of serializability:

A schedule S is serializable iff it produces the same database state as a serial
schedule T, where the transactions in T are exactly those in S, and are ordered
in T according to their first appearance in S.
Is this definition: [3 points]
 i. Correct?
 ii. Overly restrictive: i.e. there are some serializable schedules not covered by

this definition?
 iii. Overly permissive: i.e. there are some unserializable schedules that are

covered by this definition?
 iv. (ii) and (iii)

Answer (choose one): ___________

b) Bob and Anne share a bank account for their business. Today they went to the
bank at the same time. Draw the dependency graph for the schedule below.
You do not need to label any edges in the graph. [3 points]

T_Bob T_Anne
Description Action Description Action
Looks at checking
balance

R(C)

Looks at savings
balance

R(S)

Looks at checking
balance

R(C)

Transfer $200
from checking to
savings

W(C)

W(S)

Withdraw $100
from checking

W(C)

commit
commit

 Name ____________________________

11

c) Is the schedule in (b) conflict serializable? If so, give an equivalent serial
schedule. If not, enumerate all the serial schedules, and explain how Bob and
Anne’s experience would be changed in each. [5 points]

d) Suppose that the database system at the bank implemented strict 2-phase locking
as we studied in class. Assume that Bob and Anne’s requests for actions arrive
in the same order as in (b), but if either of them is blocked while waiting for a
lock, their actions stop arriving until they acquire the lock (after which time they
continue as fast as they can). Describe what happens in that scenario: a few
words should suffice. [5 points]

 Name ____________________________

12

7. Sorting and Hashing [12 points]
Consider the following query:

SELECT g, COUNT(*) FROM T GROUP BY g

Assume that table T is of size N disk blocks, and the buffer pool has (B+1) frames
available for this grouping operation.

NOTE: We assume that ÷N is a little more than B+1. (Think about this!)

We will consider both hash-based and sort-based implementations of grouping. For
hash-based grouping, we will use the scheme you implemented for homework 2. For
sort-based grouping, we will use the scheme described in class, with heapsort (also
known as tournament sort) as our in-memory sorting algorithm.

Note that we are not writing out the final result of sorting or hashing, but we do
include the cost of initially scanning table T!!

For each technique in the table below, write down the letter of the correct cost
solution (a – f). Each technique has exactly one matching cost, but a given solution
may appear 0, 1 or many times in the table. [3 points each]

Possible solutions include the following costs:
a) N I/Os
b) 3N I/Os
c) 5N I/Os
d) 6N I/Os
e) 7N I/Os
f) B I/Os

Technique Solution

Sort-based, average case

Sort-based, worst case

Sort-based, best case

Hash-based, best case

 Name ____________________________

13

SCRATCH

 Name ____________________________

14

SCRATCH

