Final Exam, CS186, Spring 2012 Prof. Joe Hellerstein

Similarity Joins
Some of you may remember Homework 5 from a short while ago. This question is about ways we
could improve the similarity join algorithm you implemented there.

1.

Recall from Homework 4 that we ensure that the list of trigrams for a given input string has

at maximum 1 instance of each trigram. For example, the trigrams for “geegee” are [“gee”,

» o«

“eeg”, “ege”] (excluding padding). We decide that we want to weight trigrams based on how
frequently they appear in the original string, so our output for the above string would be,
conceptually, [“gee”: 2, “eeg”: 1, “ege”: 1].

a)

b)

[1 pt] Here is the pseudocode for generate_trigrams:

DEF GENERATE_TRIGRAMS(INPUT):

TRIGRAMS = LIST()

FOR WORD IN INPUT.SPLIT(* “): # SPLIT INPUT INTO WORDS
ADD ALL TRIGRAMS FOR THE GIVEN WORD TO OUR LIST.
TRIGRAMS += MAKE_TRIGRAMS(WORD)

SORT(TRIGRAMS) # SORT THE LIST OF TRIGRAMS

UNIQUE(TRIGRAMS) # REMOVE DUPLICATES

RETURN TRIGRAMS

©NO AN~

Which line should we replace with a call to “accrecaTe(TRIGRAMS)”, Which aggregates
adjacent trigrams into the desired weighted list?

[1 pt] Recall that our inverted index in HW5 holds entries that contain information
about (MinimalTuple, NTrgms in the tuple, and a Trgm in the tuple). We have one
index entry for every trigram in every inner tuple. What is the lexicographic sorting
order for this index?

A. (MinimalTuple, NTrgms, Trgm)

B. (MinimalTuple, Trgm, NTrgms)

C. (Trgm, MinimalTuple, NTrgms)

D. (Trgm, NTrgms, MinimalTuple)

[2 pts] Now we want to add the “Weight” of the given Trgm into the index. We need
to decide where we should insert it into the lexicographic ordering from (b). Select
all valid positions for the “Weight” field in the lexicographic ordering (there may be
more than one valid answer—select all of them!)

A. Index 0 - at the beginning

B. Index 1 - after the first key

C. Index 2 - after the second key

D. Index 3 - at the end

2. Let’s say that instead of storing the MinimalTuple in the index, we decide to store the RID
(“record id”) which is a field in the MinimalTuple that can uniquely identify every tuple in a
given table (i.e., a primary key).

a) [1 pt] How does storing RID instead of MinimalTuple affect our memory usage in
general?

A. It decreases our memory usage.
B. Itincreases our memory usage.
C. Itdoesnot change our memory usage.

b) [1 pt] Assuming the inverted index fits in memory, how does storing RID instead of
MinimalTuple affect the number of I0s during the join?

A. It decreases the number of [Os.
B. Itincreases the number of IOs.
C. Itdoesnot change the number of I0s.

c) [2 pts] Assume the necessary changes have already been made to the inverted
index. How will replacing MinimalTuple with RID change the similarity join
algorithm?

On the answer sheet, mark N if it will “Not require a change”, mark T if it will require a
“Trivial change” (i.e., just altering one line), or C if it will require a “Complicated
change” (adding actual logic to the code).
i. Trigrammating the inner tuples.
ii. Storing the entries in the index.
iii. Finding the least tuple pointed to by all the outer trigrams.
iv. Concatenation of the tuples to be returned.

Logging and Recovery

After mastering the skills of CS186 you manage to implement your own database. But oh no, a
bunny chewed through the power cable on your server and everything crashed! When you boot
back up you see the following log records and transaction and dirty page table that were created at

the last checkpoint.
Lo .
& Transaction Table
LSN Record prevLSN
10 T1 updates P3 null Transaction Status lastLSN
20 T1 updates P1 10 T1 running 10
30 T2 updates P2 null T2 running 30
40 T3 updates P1 null R running 40
50 Begin Checkpoint -
60 T3 updates P3 40
Dirty Page Table
70 T3 Aborts 60
80 End Checkpoint - Page ID recLSN
90 CLR undo T3 LSN: 60 70 P1 40
100 T1 updates P4 20 P3 10
110 T1 commits 100
120 T1 Ends 110
3. [1 pt] What is the undoNextLSN of the phase?
CLR at90?
7. [2 pt] What are the LSNs of log
4. |2 pts] Fill in the Transaction and records that are read in the undo
Dirty Page Table at the end of the phase?

analysis phase.
8. [4 pts] Write down the log records

5. [1 pt] Whatlog record will the redo that will be written, and label them
phase start at? with the phase in which they’re
generated (A for Analysis, R for Redo,
6. [2 pt] What are the LSNs of log or U for Undo). For CLR’s, make sure

records to be redone in the redo to add the undoNextLSN.

Concurrency Control

Consider the following schedule:

TIME
Tl W(B) R(E)
T2 R(C) W(B)
T3 W(C) W(E)
T4 R(E) R(B) W(B)
9. [1 pt] True/False: The above schedule is conflict serializable.
10. [1 pt] True/False: There is an edge from T2 to T1 in the dependency graph.
11. [1 pt] True/False: There is an edge from T1 to T3 in the dependency graph.
12. [1 pt] True/False: There is an edge from T3 to T4 in the dependency graph.
13. [1 pt] True/False: There is an edge from T3 to T2 in the dependency graph.
Consider the sequence of operations in the box to the right:
1) Lock X(C)
14. [1 pt] Under two phase locking, what is the earliest step after which 2) Lock S(A)
we could release our lock on C? Your answer should be a number 3) Regd(C)
f «1p” 4) Write(C)
(e.g., after step). 5) Lock S(B)
6) Read(B)
15. [1 pt] Under strict two phase locking, what is the earliest step after 7) Lock S(E)
which we could release our lock on C? Your answer should again be 8) Read(E)
a number (e.g., after step “12”). 9) Read(A)
<end of
transaction>

16.

17.

18.

[1 pt] True/False: There are conflict serializable schedules that

cannot occur under two phase locking.

two phase locking.

[1 pt] True/False: There are conflict serializable schedules that cannot occur under strict

[1 pt] In the multi-granularity locking protocol we discussed in class, if [hold an X lock on

one page of a table, and an S lock on another page of the same table, what lock (if any) do I

have on the table?

Query Processing and Optimization

Consider a student database schema as below, with primary keys underlined and foreign keys as

listed:

STUDENTS (sid, sname, street, city, age, gender)
REGISTERED (sid, cid, credits)
foreign key sid references STUDENTS
foreign key cid references COURSES
COURSES (cid, cname, profname)

Assume the following statistics:

19.

20.

21.

The STUDENTS relation has 10,000 tuples spread evenly across 500 pages
The REGISTERED relation has 50,000 tuples spread evenly across 1,000 pages
The COURSES relation has 500 tuples; 40 tuples of COURSES fit in each page
NKeys(city) for STUDENTS is 200 (i.e., there are 200 distinct values for city)
NKeys(age) for STUDENTS is 80

NKeys(gender) for STUDENTS is 2

Low(age) for STUDENTS is 10

High(age) for STUDENTS is 90

NKeys(gender) for STUDENTS is 2

[1 pt] Consider a join of STUDENTS and REGISTERED. How many 1/0’s will a Page-Oriented
Nested Loop Join take using STUDENTS as the outer relation? (You should ignore the cost of
writing the final join answer out to disk.)

[1 pt] Again, consider joining STUDENTS and REGISTERED. Now assume that we have
B=52 memory pages available for the join. Using the Block (Chunk) Nested Loop Join with
REGISTERED as the outer, how many [/0’s will be required? (You should ignore the cost of
writing the final join answer out to disk.)

[1 pt] Consider the following query:
SELECT gender, COUNT(*) FROM STUDENTS GROUP BY gender
Calculate the total number of [/O’s required to answer this query using Hybrid Hash-based

Grouping using the (<Group Val, Trans Val>) approach described during lecture. Assume
that the final output does not need to be written to disk.

Now consider the following indexes:
* RegSCis a clustered B+ Tree defined on composite key <sid, cid> for REGISTERED
(NPages = 39,000)
* StudC is an unclustered B+ Tree index is defined on the city attribute for STUDENTS
(NPages = 600)
* StudA is a clustered B+ Tree index is defined on the age attribute for STUDENTS
(NPages = 600)

Each of the indexes is Alternative 2 and can be assumed to have a height of 3 (each root-to-leaf
path is 3 pages). Also assume that for each index, 50 index entries fit in one index page

For the next three questions, you need to fill in (a) the expected number of output tuples according
to the System R approach, (b) an efficient method (file scan, index lookup, etc) for answering this
query and the names of any indexes you are using, and (c) the number of disk accesses required. If
you feel the need, you can write down any assumptions you are making in your answer (but be
extremely brief!)

22. [2 pts] SELECT * FROM REGISTERED WHERE cid = “CS186";

a) Estimated # Tuples in Answer:
b) Method and access path used:
c) Estimated # I/0’s required:

d) Assumptions:

23. [2 pts] SELECT * FROM REGISTERED WHERE sid = “01234567";

a) Estimated # Tuples in Answer:
b) Method and access path used:
c) Estimated # I/0’s required:

d) Assumptions:

24. [2 pts] SELECT * FROM STUDENTS WHERE city = ‘Berkeley’ AND age > 50;

a) Estimated # Tuples in Answer:
b) Method and access path used:
c) Estimated # I/0’s required:

d) Assumptions:

Parallelism

Imagine that the CS186 staff—5 TAs and 1 Professor—has to grade 300 exams with 6 questions per
exam. Each question was written by a different Member Of Staff (MOS), and must be graded by that
MOS: no MOS can grade a question written by another MOS!

Circle Grading. The staff sits in a circle to grade. Exams are partitioned into 6 random piles of 50
exams each, and each MOS gets one pile. The grading process works as follows: each staff member
removes an exam from the top of their pile, works on it for exactly 1 minute and writes down a
score for their question. They then instantly slide the exam to the bottom of the pile belonging to
the MOS on their right. (Assume that remove and slide can happen concurrently and
instantaneously). When a MOS sees an exam with their own question already scored, they finish.

25. [1 pt] How many minutes pass in the Circle Grading Scheme before the last MOS finishes?

FedEx Grading. Imagine the following grading scheme. The professor leaves town to participate in
a 2-day "research retreat” at Lake Tahoe. The 5 TAs go home to 5 different cities (none of them
Berkeley) for summer break. The Professor tells each TA to take home 60 exams, use FedEx to pass
the exams among them as needed, and then send the exams back to him in Berkeley. Assume that
FedEx accepts packages until 5PM, and delivers the next day by 9AM for a fixed cost of $10 per
package, regardless of size. Assume also that TAs have nothing better to do on a summer day than
grade exams, at the rate of exactly 1 question per exam per minute. Finally, recall that the final
results have to arrive in Berkeley at the professor's office so he can grade his question at the end.

26. [2 pts] Consider optimizing the FedEx Grading Scheme to minimize time to
completion. How many days does it take from the start until the Prof. gets the exams?

27. [2 pts] Now consider optimizing the Distributed Grading Scheme to minimize FedEx cost.
How much money would be required to complete the grading process at minimum?

28. [1 pt] Is it possible to optimize both time-to-completion and FedEx cost?
A. Yes, because the time-optimal algorithm minimizes communication as well.
B. Yes, in the average case analysis, but No in the worst case analysis.
C. No, because of inherent tradeoffs between latency and bandwidth.
D. No, because minimizing FedEx cost requires time to form bigger batches.

Sorting. After grading, the exams must be sorted by (Lastname, Firstname). This will take time.
Assuming the MOS are all in one place, there are two proposals for how to proceed:

TED's PROPOSAL: “Let’s range-partition by LastName. We create 6 "bins" of exams: one bin each
for LastNames beginning with [A-D], [E-H], [I-L], [M-P], [Q-T], and [W-Z]. In the first phase we
shuffle—go through our subpiles and drop exams into the appropriate bins. In the second phase,
each of us sorts one bin independently, and then we just concatenate the results”.

JIM's PROPOSAL: “Let's each just sort the subpile we have. We can then merge our sorted runs”.

Assume that shuffle and merge take the same amount of time, and concatenate takes zero
time. Assume also that each MOS sorts at the same speed, O(nlogn) in the number of exams.
29. [1 pt] Which proposal is more efficient: Ted’s or Jim’s? Explain your answer in five words or
less. (Over-long answers may be penalized!)

sQL

[t is almost time for the Summer Olympics, during which stressed-out athletes get tested and scored
while we sit on the couch. That will be nice.

In this question we assume a very simple database for scoring athletes in their Olympic events, with
primary keys underlined, and integrity constraints as noted:

Athletes(sid integer, name text, country text)

Events(eid integer, sid integer, score float, ename text)
sid foreign key to Athletes.
score ranges from 0 to 10
score NOT NULL

30. [6 pts] For each query (a)-(f), write down the letter of the corresponding English
description on the bottom (A)-(F). Each query matches only one description, but it is
possible for each description to correspond to multiple queries (or none!)

a) SELECT DISTINCT A.sid d) SELECT A.sid
FROM Athletes A, Events E FROM Athletes A
WHERE E.sid = A.sid WHERE 1 >=
AND E.score < 10; (SELECT COUNT (*)

FROM Events E
WHERE E.sid = A.sid
AND E.score = 10);
b) SELECT A.sid

FROM Athletes A e) SELECT DISTINCT A.sid
WHERE A.sid NOT IN (FROM Athletes A
SELECT E.sid WHERE A.sid NOT IN (
FROM Events E SELECT E.sid
WHERE E.score < 10); FROM Events E

WHERE E.score = 10);
c) SELECT DISTINCT A.sid
FROM Athletes A, Events E f) SELECT A.sid
WHERE E.score = 10; FROM Athletes A, Events E
WHERE A.sid = E.sid
GROUP BY A.sid
HAVING AVG(E.score) = 10;

Athletes who got no 10 scores

Athletes who got at least one 10 score

Athletes who got at least one score less than 10

Athletes who got “straight 10’s”: i.e., a 10 score in every event they competed in
Athletes who got at most one 10 score

Athletes who competed in every event.

mmo oW

Database Design

GSL (GOMTV Global Starcraft II League) three-time champion Lim Jae Duk has contacted you to ask
for help in normalizing the GSL's database of 1v1 Starcraft Il matches. He provides you the
following CREATE TABLE statement, as well as the following additional functional dependencies.

SQL CREATE TABLE Statement: Additional Functional Dependencies:
CREATE TABLE GSL M-D
(match datetime timestamp, -- D E->R
match id, int PRIMARY KEY, -- M

— Ni— Gy, Cq
playerl name text, -- N,

Nz - G2, C2

player2 name text, -- N,
playerl gamertag text, - G G1,Ci—> Ny
player2 gamertag text, -- G, Gy, C2—= N
playerl charid int, -- C,
player2 charid int, -- C,
commentator_ name text, -- E
commentator rating int); -- R

31. [2 pts] Decompose the above table into BCNF using the functional dependencies in order,
considering the PRIMARY KEY as the first functional dependency. In your answer show
only the tables that result from the decomposition.

32. [1 pt] True/False: This decomposition is lossless join.

Lim Jae Duk has also requested an ER diagram of the decomposed table. He has translated the

above CREATE TABLE declaration and functional dependencies into ER-diagram-speak. He

provides you with the following translation:

e Each match participates in the GSL relationship at most once, with 2 Players and 1
Commentator.

e id determines datetime for Match.

e A Commentator's name determines his or her rating.

e A Player's name determines his or her Character's charid and gamertag, if that player has a
Character.

e A Character's gamertag and charid determines the name of the Player, if that Character has
a Player.

33. [4 pts] Complete the ER diagram on the answer sheet to reflect the translation above. The
only things you need to do are (i) add lines & arrows and (ii) add underlining to indicate
primary keys.

Name: Class Account:
cs186-

Similarity Joins

la. Line # 1b. (A-D) 1c. (A-D)

2a. (A-C) 2b. (A-C) 2¢.) i ii. . iii. iv..

Logging and Recovery

3. undoNextLSN=

Page ID recLSN
4.

Transaction Status lastLSN

5. LSN: 6. LSNS:

7. LSNs:

8. Phase | LSN Record prevLSN undoNextLSN

Name: Class Account:
cs186-

Concurrency Control
9. 10. 11.

OTt1 O F OTt1 O F Ortr O rF
12. 13.

OTt1 O F OTt1 O ¥
14. After step 15. After step 6. | O 1 O F
17. |O 1 O F | 18 Lock:
Query Processing and Optimization
19. 1/0s 20. 1/0s 21. 1/0s
22a. tuples 22b.
22c. I/0s
23a. tuples 23b.
23c. I/0s
24a. tuples 24b.
24c. I/0s

Name: Class Account:

cs186-
Parallelism
25. minutes 26. days 27.%
28. 29.
sQL
30a. (A-F) 30b. (A-F) 30c. (A-F)
30d. (A-F) 30e. (A-F) 30f. (A-F)

Database Design

31.

32.
Or O F

Name: Class Account:
cs186-

33.

Match

Player Commentator

Character

