
 1

Final: CS186, Spring 2015
Prof. J. Hellerstein

You	
 should	
 receive	
 a	
 double-­‐sided	
 answer	
 sheet	
 and	
 a	
 13-­‐page	
 exam.	
 Mark	
 your	
 name	
 and	
 login	
 on	
 the	

front	
 of	
 the	
 answer	
 sheet,	
 and	
 in	
 the	
 blanks	
 above.	
 For	
 each	
 question,	
 place	
 only	
 your	
 final	
 answer	
 on	

the	
 answer	
 sheet—do	
 not	
 show	
 work	
 or	
 formulas	
 there.	
 	
 You	
 may	
 use	
 the	
 backs	
 of	
 the	
 questions	
 for	

scratch	
 paper,	
 but	
 do	
 not	
 tear	
 off	
 any	
 pages.	
 	
 We	
 will	
 ask	
 you	
 to	
 turn	
 in	
 your	
 question	
 sheets	
 as	
 well	

as	
 your	
 answers.	

I.	
 Query	
 Processing	
 [16	
 points]	

You and your friends have a brilliant idea for a startup: you decide to build a social-media site,
FishBook, which allows users to share their pet fish with the world.

Low on funds, you start building your application on an old ten-year-old computer your friend’s
parents threw out last year. After much difficulty, you succeed in installing a database
management system (DBMS) on this computer, which uses a System R (Selinger) optimizer:

• Page size: 32 KB
• Allocated memory for DBMS: 500 pages (about 16MB)

1. (2 points) You decide to test out your shiny new system by running some performance tests

on it. What is the maximum amount of data your system can aggregate using external
hashing in three passes, in pages, assuming the hash functions partitions data uniformly?
You can write the final answer as an arithmetic expression.

You start building your web application. Each user can post descriptions of their pet fish to this
application. Here’s part of your database schema:

Users(uid int, username text, ...)
Fish(fid int, ownerid int, age_in_days int, description text, ...)

where uid and fid are primary keys, assigned as sequential integers in ascending order
starting from 0. Fish.ownerid is a foreign key to Users.

Overnight, your application goes viral. Thousands of users have signed up and have posted
their pets on your site:

• Users: 10000 tuples, 1000 pages
• Fish: 50000 tuples, 10000 pages

For the following questions, assume the values are distributed uniformly and independently.

My Name: _________________________

My Course Account: cs186-___________

 2

I. Query Processing, cont.

Your startup co-founder wants some material for
marketing, so you produce some example data
from your database:

SELECT U.username, F.description
FROM Users U, Fish F
WHERE F.fid > 45000
AND U.uid = F.ownerid;

2.

a. (3 points) What is the estimated I/O cost of the query plan above, assuming it uses
a Sort-Merge join? Use the optimization (described in class) where we merge-join
during the final sort pass. Ignore the effects of the buffer pool and disk locality. Do
not count the cost of write your final output. Assume that we use quicksort for in-
memory sorting.

b. (2 points) How many tuples are estimated to be returned by this query?

3. (2 points) You decide to speed up your application by adding indexes to your database.
Consider two possible indexes:

• #1: A clustered alternative 1 index on Users.uid, or
• #2: An unclustered alternative 2 index on Fish.ownerid

For each of the following queries, which of the above indexes will be more useful in
speeding up these queries on expectation? Answer #1 or #2 for each of the following:

a. Given a user ID, compute the average age of his/her fish.
b. Given a fish ID, look up the username of the user who owns this fish.
c. Count how many fish some user has.
d. Find the usernames of the users who own the 100 oldest fish.

 3

I. Query Processing, cont.
Users might find it easier to become acquainted with each others’ pet fish if they can also see
pictures of them. You add to your database storage for these pictures:

Pictures(pid int, fishid int, image blob, ...)

where pid is a primary key, Pictures.fishid is a foreign key to Fish and a blob is the
image data associated with a picture.

4. (3 points) A part of your site needs to display the number of pictures there are of each pet.

Which of the following will decrease the I/O cost of this query? Circle all that apply.
i. Sorting Pictures by fishid on disk
ii. Running a compression algorithm on fish image data before inserting the tuples into

Pictures
iii. An unclustered index on Pictures.pid

You decide to add a species-recognition feature to your application. Using state-of-the-art
machine learning algorithms, you write a classifier for these fish images. You add this to your
DBMS as a custom user-defined function (UDF), classify(blob).

5. (4 points) Consider the following query:

SELECT U.username, count(F.fid)
FROM Users U, Fish F, Pictures P
WHERE U.uid = F.ownerid
AND F.fid = P.fishid
AND classify(P.image) = 'clownfish'
GROUP BY U.uid
ORDER BY count(F.fid) DESC;

Assume only heap files are used for storage. Write down the letters of all joins that produce
interesting orders for this query.

a. Sort-merge(Users, Fish)
b. Sort-merge(Fish, Users)
c. Chunk-Nested-Loops(Users, Fish)
d. Chunk-Nested-Loops(Fish, Users)
e. Sort-merge(Pictures, Fish)
f. Sort-merge(Fish, Pictures)
g. Chunk-Nested-Loops(Pictures, Fish)
h. Chunk-Nested-Loops(Fish, Pictures)

 4

II. Indexing / Storage [17 points]

1. (5 points) True/False

a. The pin count for a buffer pool frame reflects the number of times the page it holds
has been referenced since it was last loaded into memory.

b. If pages are always fully packed, then inserting or deleting a tuple in a sorted file of N
pages will require ½ N I/Os on average.

c. The slotted page format allows tuples to be moved to a different location on the
same page without changing the record ID.

d. For a lookup on a primary key, a clustered B+ tree provides better spatial locality
than an unclustered B+ tree.

e. In a tree-structured index, the fanout is large in order to keep the height of the tree
fairly shallow.

You are working as a database administrator (DBA) at ClikClak, an anonymous text message
forum app. Their data is stored in a single table with the following schema:

Post (postid int, userid int, pdate int, content text)

where postid is a primary key for Post. Post takes up N = 10,000 pages on disk.

The Post table is partitioned across three servers based on the data’s access pattern.

Server ID Read/Write
Ratio % of N Access Pattern Details

S1 80/20 20% sequential scans in chronological order

S2 40/60 60% posts made by a user, shown on their profile

S3 99/1 20% queries for random specific posts
no temporal locality

2. (12 points) For each server, fill in the blank on your answer sheet to choose parameters

that best optimize performance for that server’s access pattern. Don’t ignore the
maintenance cost of insertions/updates when considering performance.

2a. Select a buffer replacement
policy:

A. Least Recently Used
B. Most Recently Used
C. Random
D. Any of the above

2b. Select a file layout and index:
A. HeapFile, Unclustered B+ tree on postid
B. HeapFile, Clustered B+ tree on userid
C. SortedFile on date, Unclustered B+ tree on date
D. SortedFile on date, No index
E. SortedFile on userid, Unclustered B+ tree on content
F. SortedFile on userid, No index

 5

III. Database Design [18 pts]

The CS186 staff is designing a database to store information about students who are currently
taking the course.
For each student, the staff wants to keep track of the one optional discussion section to which
the student is assigned—students may choose to be assigned to no discussion section if they
like. The discussion section is composed of a unique course control number (ccn) for that
section, and the name of a TA. Students will also do assignments—all of which have differing
weights. For each assignment, the staff wants to store the number of points the student earned
and the number of slip days they have used on that assignment. If a student does not turn in an
assignment, they will be recorded in the database as having done the assignment but will
receive zero points. Assume there are many assignments, and all assignments are released to
the class to be done.

1. (3.5 points) To implement the database, a TA decides to create an ER diagram. Complete

the ER diagram on the answer sheet for the Student, Assignment, and Discussion entities
by underlining the
primary keys and
connecting the given
entity and relationship
sets using the
appropriate lines and/or
arrows. If bolding a
line/arrow, be sure to
clearly make it bold.

2. (1.5 points) The given

ER diagram is missing
the proper notation for its weak entity. Complete the notation for the weak entity in the
diagram on the answer sheet.

3. (2 points) The staff decides the assignments will be difficult, so students should work in
teams of two. Each team should have one student who is the “team lead”. Make the
additions to the ER diagram on the answer sheet to do so. Assume that there are an even
number of students. The fewer entities and relationships you use, the better. You should not
need to add more than one entity and/or relationship.

4. (2 points) For each of the following, select whether the addition would best be included in
the ER diagram as an attribute (A), entity (E), or needs more information (NMI).
a. Student’s primary contact email
b. Student’s additional emails
c. Student’s address with city, street, etc.
d. Student’s classes

 6

III. Database Design, Cont.

The staff decides that they need to store more information about each assignment. The TA who
redesigns things ignores the ER diagram, and simply designs a relational schema with
functional dependencies. Thus, treat the following parts separately from the ER diagram above.

Along with the id of the student who did the assignment, the assignment name, weight, and
number of slip days used, they also want to store data for all of the individual questions. For
each question, they want to track the total number of points it is worth, how many points the
student received on that question, and the student’s response.

The TA proposes that they should use the relation INWSQTPR, where each attribute is
abbreviated by the capitalized version of the underlined, bolded character of the corresponding
attribute in the description above.

They imagine the table would look like the one to
the right. However, the TA realizes that they can
improve their design by finding some functional
dependencies (FDs) from the data model, then
decomposing the relation into BCNF.

5. (2 points) What benefits would the

decomposed schema give over using the original relation? Mark all of the following that will
always apply.

a. Reduce space required to store the data
b. Avoid cartesian products
c. Speed up queries
d. Avoid update anomalies

6.

a. (2 points) Currently, the FDs that the TA can think of are {N → W, IN → S}.
Decompose INWSQTPR into BCNF given these functional dependencies.

b. (1 points) Is the decomposition dependency-preserving based on the FDs above? If
not, what relation(s) could you add to make it dependency preserving? Hint: You do
not need to compute F+ to answer this question!

7. (4 points) The TA needs some help determining the rest of the functional dependencies for
this assignment data model. Currently, the FDs he has are {N → W, IN → S}, but he is still
missing some useful functional dependencies that will allow him to break the relation into
more fundamental components. Write those FDs below. Do not include any trivial
dependencies or augmentations of the FDs already listed. (Hint: No more than 4 FDs).

I N W S Q T P R

1 hw1 25 1 1 5 0 ‘true’

1 hw1 25 1 2 10 10 ‘this is...’

1 hw2 10 0 1 5 5 ‘SELECT * ...’

2 hw1 25 0 1 5 5 ‘false’

 7

IV. Concurrency [19 points]

1. (5 points) True/False

a. SIX locks are compatible with IX locks.
b. Strict 2PL guarantees conflict serializability but does not prevent cascading aborts.
c. A schedule is conflict serializable if and only if its dependency graph is acyclic.
d. All view serializable schedules avoid cascading aborts.
e. Wound-wait and wait-die both favor older transactions over newer ones; however, they

favor old transactions in different ways.

2. (2 points) Consider the follow sequence of transactions:

T1 T2 T3

R(A)

W(A)

 R(B)

R(B)

W(B)

 R(C)

W(A)

T1 COMMIT

T1 END

 W(C)

 T2 COMMIT

 T2 END

 T3 COMMIT

 T3 END

Does this schedule conform to 2PL?

Does this schedule conform to strict 2PL?

 8

IV. Concurrency

3. (4 points) Write the serial schedule that is conflict equivalent to this schedule. If this

schedule is not conflict serializable, write “None”.

T1 R(B) R(F) W(F)

T2 R(E)

T3 R(E) W(E) R(F) W(F)

T4 W(B)

4. (8 points) Under a TO-MVCC scheme, the following actions happen, in the given order.

Assume that all objects A-E were originally written at TS0. Write down the letters of the
actions that would cause aborts. If no actions would cause abort, write down the letter
corresponding to “No writes fail”.

a. TS10 reads A
b. TS15 reads B
c. TS10 reads B
d. TS20 reads C
e. TS10 writes A
f. TS20 writes A
g. TS15 reads A
h. TS20 reads B
i. TS10 writes B
j. TS15 reads D
k. TS20 writes D
l. TS5 writes D
m. TS1 writes E
n. TS15 reads E
o. TS20 writes E

p. No writes fail

 9

V. Recovery [22 points]

Consider the log below. Some of the information for UPDATE and CLR log records is omitted
for brevity. Adjacent log records are spaced exactly 10 LSN's apart.
The system crashes after the last log record is written.

LSN Record prevLSN
0 UPDATE: T1 writes P1 null
10 BEGIN_CHECKPOINT
20 UPDATE: T1 writes P2 0
30 END_CHECKPOINT
40 UPDATE: T2 writes P3 null
50 UPDATE: T2 writes P4 40
60 ABORT: T1 20
70 CLR: T1 LSN 20 60
80 ??? ???
90 END: T1 80
100 UPDATE: T3 writes P3 null
110 ABORT: T2 50
120 CLR: T2 LSN 50 110

At checkpoint time, the dirty page table is empty, and the transaction table is as follows:
XID Status lastLSN
T1 Running 0

1. (2 points) What is the missing log record with LSN 80? Please follow the same format as

the records above.
The system comes back up after the crash and starts performing recovery.

2. (4 points) Fill in the transaction table as it appears at the end of analysis. You may not

need to use all rows in the table.

3. (4 points) Which pages are in the dirty page table at the end of analysis? You may not need
to use all rows in the table.

4. (4 points) What actions will occur during the REDO phase? List the LSN’s on the answer
sheet in the order that they are redone, separated by commas. No new log records will be
written during REDO.

5. (4 points) What are the records written during the UNDO phase? Start at LSN 200. The
difference between the LSN’s of two adjacent log records should be 10. You may not need
to use all rows in the table.

 10

V. Recovery, cont.

6. (4 points) Imagine a version of CS186 where you have to implement ARIES as a class
project. Your partner is responsible for the code managing the dirty page table, and his code
updates the recLSN in the dirty page table to reflect each update to a page, regardless of
when the page was brought into the buffer pool. What bugs might you see after recovery?
Circle all that apply.

a. Some writes of committed transactions would be lost.
b. Some writes of aborted transactions would be visible in the database.
c. Some transactions that should have been aborted will be committed.
d. The system tries to commit or abort a transaction that is not in the transaction table.

VI. SQL [15 points]
A group of college dropouts decide that they can take on Uber and start their own ridesharing
service called Super.

Super’s core business depends on PostgreSQL and primarily relies on 3 tables shown below.
Assume that records in the Trip table are only created and committed once the actual trip has
been completed. Assume the distance stored is in miles. The passenger_rating of a trip is
the rating that the passenger received from the driver, and the driver_rating of a trip is the
rating that the driver received from the passenger. Assume every driver in the database has
completed at least one trip. Ratings are on a scale from 1.0 to 5.0 and can be NULL.

As the Super business grows, they realize the need for analysts with SQL knowledge to help
them make better business decisions. They consult you in order to answer their questions
regarding their Super business.

 11

VI. SQL, cont.

Passenger(pid int, first_name text NOT NULL, last_name text NOT NULL)

Driver(did int, first_name text NOT NULL,last_name text NOT NULL)

Trip(tid int,

pid int references Passenger(pid) NOT NULL,
did int references Driver(did) NOT NULL,
start_time timestamp NOT NULL,
end_time timestamp NOT NULL,
distance decimal NOT NULL,
passenger_rating decimal,
driver_rating decimal)

1. (3 points) You hypothesize that some months of the year are more popular than others,

perhaps due to weather or special events like holidays. To assess this, you want to know
how many trips were taken in each month, independent of year. You and your team define a
Trip’s start_time to indicate which month the trip belongs to.

 CREATE VIEW num_trips_by_month AS
 SELECT EXTRACT(MONTH FROM ___________________) AS month,
 __________________ AS num_trips
 FROM _____________________
 GROUP BY month;

Note: EXTRACT(MONTH FROM _____) is a PostgreSQL function that extracts the numeric
month (e.g. January = 1) out of a timestamp or interval.

2. (3 points) You want to prepare your staff next year to improve heavily on the poorest

performing month(s), independent of year. Which month(s) had the minimum number of
trips? (Use the view created in Q1)
SELECT month
 FROM num_trips_by_month NTM JOIN
(SELECT ________________ AS min_column
 FROM _____________________) MIN_TABLE
ON ________________________;

 12

VI. SQL, cont.

3.

a. (3 points) Which drivers have a perfect 5.0 average rating from all their trips that
received driver ratings? (Return just the unique did)

 SELECT T1.did
 FROM Trip AS T1
 WHERE ________________(
 SELECT _______________
 FROM Trip AS T2
 WHERE _______________________________________;

);

b. (1.5 points) When executing this query, you find that this query runs very slowly.
What about the structure of this query may cause it to execute so slowly? Circle all
statements that could apply.

A. There are no indices built on the Trip table
B. The query optimizer optimizes each SELECT block in the query

independently
C. The query will take 𝑂(𝑛!) of work, where 𝑛 is the size of Trip table and the

table is very large
c. (3 points) You attempt re-writing this same query with the hope of speeding it up.

 SELECT T.did
 FROM Trip as T
 GROUP BY _________________
 HAVING ___________________ ;

4. (1.5 points) You hypothesize that drivers and passengers with the same first name get

along better (have better ratings) than drivers and passengers that don’t share any
commonalities.

You want to eyeball this data yourself. So you have your associate write a query that
returns a single row with 2 columns. The first column is the average driver_rating of all
trips that have driver ratings where the driver and passenger also had the same
first_name. The second column is the average driver_rating of all trips that have
driver ratings where the driver and passenger had distinct first_name’s.

Read the following three queries, and circle the ones that yield the desired result on your
answer sheet. Notice that the passenger and driver ratings can be NULL, and that SQL
aggregate functions (COUNT, SUM, AVG, etc) are defined to ignore NULL values in their
calculations.

 13

VI. SQL, cont.

Query A:
 SELECT SAME_NAME.rating AS same_name,

 DIFF_NAME.rating AS diff_name
 FROM (SELECT AVG(driver_rating) AS rating

 FROM Passenger P, Driver D, Trip T
 WHERE P.pid = T.pid AND D.did = T.did

 AND P.first_name = D.first_name) AS SAME_NAME,
(SELECT AVG(driver_rating) AS rating

 FROM Passenger P, Driver D, Trip T
 WHERE P.pid = T.pid AND D.did = T.did

 AND P.first_name <> D.first_name) AS DIFF_NAME;

Query B:
SELECT SAME_NAME.rating AS same_name,
 DIFF_NAME.rating AS diff_name

 FROM (SELECT (SUM(driver_rating) / COUNT(*)) AS rating
 FROM Passenger P, Driver D, Trip T
 WHERE P.pid = T.pid AND D.did = T.did

 AND P.first_name = D.first_name) AS SAME_NAME,
(SELECT (SUM(driver_rating) / COUNT(*)) AS rating

 FROM Passenger P, Driver D, Trip T
 WHERE P.pid = T.pid AND D.did = T.did

 AND P.first_name <> D.first_name) AS DIFF_NAME;

Query C:
SELECT AVG(TS.driver_rating) AS same_name,
 AVG(TD.driver_rating) AS diff_name

 FROM Passenger PS, Driver DS, Trip TS,
 Passenger PD, Driver DD, Trip TD

 WHERE PS.pid = TS.pid AND DS.did = TS.did AND
 PD.pid = TD.pid AND DD.did = TD.did AND
 PS.first_name = DS.first_name AND

 PD.first_name <> DD.first_name;

Name:__________________________

Class Login (e.g. -aa): ______________

Class Login – person on left:_________

Class Login – person on right:________

I. Query Processing
1. _________________________ pages

2a. _________________________I/Os

2b. ________________________ tuples
3a. #1 / #2
3b. #1 / #2
3c. #1 / #2
3d. #1 / #2
4. i. / ii. / iii.
5. ______________________________

II. Indexing / Storage
1a. True / False 1d. True / False
1b. True / False 1e. True / False
1c. True / False

2a. S1 _____ S2 _____ S3 _____
2b. S1 _____ S2 _____ S3 _____

III. Database Design
1-3. Add to the diagram below.
4. a. A / E / NMI
 b. A / E / NMI
 c. A / E / NMI
 d. A / E / NMI
5. a / b / c / d
6a. ___________________________

6b. Yes / No ____________________

7. _____________________________

IV. Concurrency
1a. True / False 1d. True / False
1b. True / False 1d. True / False
1c. True / False

2a. Yes / No 2b. Yes / No

3. _____________________________

4. _____________________________

V. Recovery
1. LSN Record prevLSN

2. XID Status lastLSN

3. PID recLSN

 4. ___

5. LSN Record prevLSN
 200
 210
 220
 230
 240
 250

6. A / B / C / D

VI. SQL
1. CREATE VIEW num_trips_by_month AS
 SELECT EXTRACT(MONTH FROM

 ______________) AS month,

 _______________________ AS num_trips

 FROM ____________________

 GROUP BY month;

2. SELECT month
 FROM num_trips_by_month NTM JOIN

 (SELECT _____________ AS min_column

 FROM __________________________

) MIN_TABLE

 ON _______________________________;

3a. SELECT T1.did
 FROM Trip AS T1

 WHERE ___________________________(

 SELECT _________________________

 FROM Trip AS T2

 WHERE ____________________________

 __________________________);

3b. Circle statements that apply:
 A / B / C
3c. SELECT T.did
 FROM Trip as T

 GROUP BY _________________________

 HAVING __________________________ ;

4. Circle the queries that produce the desired outcome: A B C

