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1. Munching (11.5 pts) 
i) (7.5 pts) Suppose Pac-Man is given a map of a maze, which shows the following: it is an ​M​-by-​N grid with a                       
single entrance, and there are ​W walls in various locations in the maze that block movement between empty spaces.                   
Pac-Man also knows that there are ​K pellets in the maze, but the pellets are not on the map, i.e. ​Pac-Man doesn’t                      
know their locations in advance​. Pac-Man wants to model this problem as a search problem. Pac-Man’s goal is to                   
plan a path, before entering the maze, that lets him eat the hidden pellets as quickly as possible. ​Pac-Man can only                     
tell he has eaten a pellet when he moves on top of one.  
 
Which of the following features should be included in a minimal correct state space representation? For each                 
feature, if it should be included in the search state, calculate the size of this feature (the number of values it can take                       
on). If it should ​not ​be included, ​very briefly ​justify why not. 
 

Feature Include? Size (if included) or Justification (if not included) 

Current location ⚫ ​Yes ​ /  ​◯ ​No Size: MN 
Justification: We need to keep track of where Pac-Man is. 

Dimensions of 
maze 

◯ ​Yes ​ /  ​⚫ ​No Justification: This is an input to the problem, and does not need to be              
included. 

Locations of walls ◯ ​Yes ​ /  ​⚫ ​No Justification: This is an input to the problem, and does not need to be              
included. 

Places explored ⚫ ​Yes ​ /  ​◯ ​No Size: 2MN  
Justification: We need to visit every square in the maze in order to ensure              
that we eat all of the pellets, so we must track where we’ve explored. 

Number of pellets 
found 

◯ ​Yes ​ /  ​⚫ ​No Justification: We don’t know where the pellets are, so we ​can’t know when             
we’ve found a pellet when we’re planning a path. 

Time elapsed ◯ ​Yes ​ /  ​⚫ ​No Justification: This does not need to be in the state, but is instead part of the                
cost of transitioning between states. 

 
ii) (1 pt) Which approach is best suited for solving the K hidden pellets problem? Completely fill in the circle next                     
to one of the following: 
        ⚫ State Space Search        ◯ CSP        ◯ Minimax        ◯ Expectimax        ◯ MDP        ◯ RL 
iii) (2 pts) Now assume that there are K​R red pellets, K​G green pellets, and K​B blue pellets, that Pac-Man knows the                      
locations and colors of all the pellets​, and that Pac-Man wants ​the shortest path that lets him eat ​at least one                     
pellet of each color, i.e. one red, one green, and one blue. What is the total size of the search state space, assuming                       
a minimal correct state space representation?  

MN23  

Solution: ​The state needs to keep track of where Pac-Man is, and, for each color, whether or not Pac-Man has eaten                     
any pellets of that color. 
iv) (1 pt) Which approach is best suited for solving the one-pellet-of-each-color problem? Completely fill in the                 
circle next to one of the following: 
       ⚫ State Space Search        ◯ CSP        ◯ Minimax        ◯ Expectimax        ◯ MDP        ◯ RL  
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2. Uninformed Search (9.5 pts) 
 
Part A: Depth Limited Search (DLS) is a variant of depth first search where nodes at a given depth L are treated                      
as if they have no successors. We call L the​ depth limit.​ Assume all edges have uniform weight.  
 
i) (1 pt) Briefly describe a major ​advantage of depth limited search over a simple depth first tree search that                    
explores the entire search tree. 
Solution: ​Because we define a depth limit in DLS, we won’t get stuck exploring an infinite path. 
 
ii) (1 pt) Briefly describe a major ​disadvantage of depth limited search compared to a simple depth first tree search                    
that explores the entire search tree. 
Solution: ​Because we define a depth limit in DLS, if the solution is beyond the depth limit, we will not reach it. 
 
iii) (2 pts) Is DLS optimal?    ​◯ ​Yes ​ /  ​⚫ ​No    Is DLS complete?    ​◯ ​Yes ​ /  ​⚫ ​No 
Solution: ​As noted in part (ii), DLS might not find the solution. 
 
Part B: IDDFS. ​The iterative deepening depth first search (IDDFS) algorithm repeatedly applies depth limited               
search with increasing depth limits L: ​First it performs DLS with L=1, then L=2, and so forth, until the goal is                     
found. IDDFS is neither BFS nor DFS, but rather an entirely new search algorithm. Suppose we are running                  
IDDFS on a tree with branching factor B, and ​the tree has a goal node located at depth D​. Assume all edges have                       
uniform weight. 
 
i) (2 pts) Is IDDFS optimal?    ​⚫ ​Yes ​ /  ​◯ ​No Is IDDFS complete?    ​⚫ ​Yes ​ /  ​◯ ​No 
Solution: ​If the solution is at depth D, IDDFS is guaranteed to find it on the Dth iteration of the algorithm (when it                       
runs DLFS with depth D). 
 
ii) (1 pt) In the worst case asymptotically, which algorithm will ​use ​more​ memory​ looking for the goal? 
  
                                                               ​◯ ​IDDFS​ /  ​⚫ ​BFS 
Solution: ​DLS and IDDFS both use asymptotically the same amount of memory as DFS (which only requires                 
keeping track of the path to the current state), which is less than BFS (which requires keeping track of the entire                     
fringe.) 
 
iii) (2.5 pts) In project 2, you used DLS to implement the minimax algorithm to play Pac-Man. Suppose we are                    
instead writing a minimax AI to play in a speed chess tournament. Unlike the Pac-Man project, there are many                   
pieces that you or your opponent might move, and they may move in more complicated ways than Pac-Man.                  
Furthermore, you are given only 60 seconds to select a move, otherwise you are given a random move. ​Explain                   
why we’d prefer to implement minimax using IDDFS instead of DLS for this problem, and ​explain how would we                   
need to modify IDDFS (as described above) so that it works for this problem. 
 
Solution: ​With a pre-set depth L, DLS could either run out of time or not utilize all the time (L could be set too                        
deep or too shallow). IDDFS will not have this problem. It would have to be modified such that the best found                     
answer would be returned once time is up. (Possible answers for this include: keeping track of the time, keeping                   
track of the best found answer at each layer) 
  

3 



 
CS188 MIDTERM I, FALL 2016 

Last 4 SID: __________________   

3. Aliens in Romania (14.5 pts) 
Here’s our old friend, a road map of Romania. The ​edges ​represent ​travel time along a road​. Our goal in this                     
problem is to find the shortest path from some arbitrary city to Bucharest (underlined in black). You may assume                   
that the heuristic at Bucharest is always 0. In this question, ​L(X, Y) represents the travel time if we went in a                      
straight line from city X to city Y​, ignoring ​roads​, ​teleporters​, ​wind​, ​birds​, etc. You should make no other                   
assumptions about the values of L(X, Y). 

 
Part A: Warm up. 
 
i) (6 pts) For each of the heuristics below, completely fill in the circle next to “Yes” or “No” to indicate whether the                       
heuristic is admissible and/or consistent for ​A* ​search​. You should fill in 6 answers (one has been provided for                   
you). ​Reminder, h(Bucharest) is always zero. 
 

Heuristic h(C) =                                 [except C = Bucharest] Admissible Consistent 

0 ⚫ ​Yes ​ /  ​◯ ​No ⚫ ​Yes ​ /  ​◯ ​No 

90 ◯ ​Yes ​ /  ​⚫ ​No ◯ ​Yes ​ /  ​⚫ ​No 

L(C, Bucharest) ⚫ ​Yes ​ /  ​◯ ​No ⚫ ​Yes ​ /  ​◯ ​No 

min(L(C, Bucharest), 146) ⚫ ​Yes ​ /  ​◯ ​No  

 
ii) (2.5 pts) For what values of x is h(C) = max​(​L(C, Bucharest), x​) guaranteed to be admissible? Your answer                    
should be in the form of an expression on x (e.g. “x = 0 OR x > 102”). 
Solution: If , then will be greater than 85, which would be an overestimate of the true cost to  5x > 8   (Urziceni)h                 
reach Bucharest from Urziceni (which is at most 85). Thus, we want . (Notice that this is a strict inequality;            5x ≤ 8         

 is fine.)5x = 8  
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Part B: Teleporters 
 
Aliens build a teleporter from Oradea to Vaslui. This means that we can now get from Oradea (top left) to Vaslui                     
(near the top right) with zero cost.  
 
i) (1 pt) Update the drawing on the ​previous​ ​page​ so that your graph now reflects the existence of the teleporter. 
Solution:​ An arc between Oradea and Vaslui with weight 0. 
ii) (5 pts) Completely fill in the circle next to “Yes” or “No” to indicate which of the following are guaranteed                     
admissible for A* search, given the existence of the alien teleporter. ​Reminder, h(Bucharest) is always zero, and                 
L(A, B) is the travel time between A and B assuming a straight line between A and B (“as a bird flies”). 
 

Heuristic h(C) =                                        [except C = Bucharest] Admissible 

77 ⚫ ​Yes ​ /  ​◯ ​No 

L(C, Bucharest) ◯ ​Yes ​ /  ​⚫ ​No 

max(L(C, Bucharest), 80) ◯ ​Yes ​ /  ​⚫ ​No 

max(L(C, Bucharest), L(C, Oradea)) ◯ ​Yes ​ /  ​⚫ ​No 

min(L(C, Bucharest), L(C, Oradea)) ⚫ ​Yes ​ /  ​◯ ​No 

 
Solution: A key insight is that from C, we need to either go directly to Bucharest without using the teleporter, or go                      
to Oradea before using the teleporter. However, neither, by itself is an admissible heuristic, so a ​max expression                  
involving L(C, Bucharest) is necessarily inadmissible. 
 
 
 
 
 
 
 
 
Survey Completion 
 
Enter the secret code for survey completion:      ______________________________ 
 
If you took the survey but don’t have the secret code, explain: 
____________________________________________ 
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4. CSPs (12 pts) 
In a combined 3​rd​-5​th grade class, students can be 8, 9, 10, or 11 years old. ​We are trying to solve for the ages of                         
Ann, Bob, Claire, and Doug. ​Consider the following constraints: 

● No student is older in years than ​C​laire (but may be the same age). 
● B​ob is two years older than ​A​nn.  
● B​ob is younger in years than ​D​oug.  

 
The figure below shows these four students schematically (“A” for​ A​nn, “B” for ​B​ob, etc). 

 
i) (2 pts) In the figure, draw the arcs that represent the binary constraints described in the problem. 
Note: Two directed arcs in place of each undirected arc is also acceptable. 
ii) (1 pt) Suppose we’re using the AC-3 algorithm for arc consistency. How many total arcs will be enqueued when                    
the algorithm begins execution? Completely fill in the circle next to one of the following:  

◯ 0   /   ◯ 5   /   ◯ 6   /   ◯ 8   /   ⚫ 10   /   ◯ 12  
Solution comment: Remember that a relationship between two variables will result in two arcs (since arcs are                 
directed.) 
 
iii) Assuming all ages {8, 9, 10, or 11} are possible for each student before running arc consistency, manually run                    
arc consistency on ​only​ the arc ​from​ A ​to​ B. 

A. (2 pts) What ​values on A​ remain viable after this operation? Fill in all that apply. 
⬛ 8    /    ⬛ 9    /    ▢ 10    /    ▢ 11 

 
B. (2 pts) What ​values on B​ remain viable after this operation?  Fill in all that apply. 

⬛ 8    /    ⬛ 9    /    ⬛ 10    /    ⬛ 11 
Solution comment:​ Remember that enforcing the arc  should never change the viable domain of B.A → B  
 

C. (1 pt) Assuming there were no arcs left in the list of arcs to be processed, which arc(s) would be added to                      
the queue for processing after this operation? 

Solution:​ ,  (in either order). They should be directed arcs, since that’s critical to the algorithm.B → A C → A  
 
iv) (4 pts) Suppose we enforce arc consistency on all arcs. What ages remain in each person’s domain? 

 
      A​nn: ___​8​_____ B​ob: ___​10​____  ​C​laire: ___​11​____  ​D​oug:  ___​11​____ 
Solution comment: If we enforce the arcs , , , , , then we can quickly find the       B → A B → D D → B A → B C → D        

only satisfying solution.  
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5. Utilities (8.5 pts) 
  
Part A: Interpreting Utility. ​(3.5 pts​) ​Suppose Rosie, Michael, Caryn, and Allen are four people with the utility                  
functions for marshmallows as described below (e.g. Michael doesn’t care how many marshmallows he gets). The                
x-axis is the number of marshmallows, and the y-axis is the utility. Rank our four TAs from ​least risk-seeking (at                    
the bottom) to most risk-seeking (at the top) using the four lines provided. ​If two people have the same degree of                     
risk-seeking, put them on the same line​. You may not need all four blanks (e.g. if two people are on the same                      
line).  

 
 
Rank in terms of risk-seeking behavior: 
 
Most:​      _______​Rosie​_____________ 
 
               ____​Michael,  Allen​_______ 
 
               _______​Caryn​____________ 
 
Least: ​     _________________________ 
 
 
 
 
 
 

 
Solution explanation: ​This question asked the student to identify if a function was risk-seeking, risk-neutral, or                
risk-averse, based on the function’s graph. Visually, we can see that Rosie’s utility function is concave up (i.e.                  
convex) and thus must be risk-seeking, Caryn’s utility function is concave down and thus risk-averse, while both                 
Michael’s and Allen’s functions are linear, and thus both have risk-neutral utility functions. 
 
For visual intuition as to why concave up functions are risk-seeking: imagine connecting two points on the                 
function’s curve with a straight line segment. Notice that this line segment is above the curve. Now, for any point                    
on this line segment, we can imagine a lottery between the two endpoints, such that the coordinates of this point are                     
(the expectation of the lottery, the expected utility of the lottery), while the point below it on the curve is the utility                      
of the expectation of the lottery. 
Conversely, a concave down function is risk-averse, because the line segment (the expected utility of the lottery) is                  
now below the curve (the utility of the expected value of the lottery), while a linear function is risk-neutral, because                    
the line segment coincides with the curve. 
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Part B: Of Two Minds. (5 pts) Some utility functions are sometimes risk-seeking, and sometimes risk-averse.                
Show that is one such function, by providing two lotteries: one for which it is risk-seeking, and one for  (x)U = x3                  
which it is risk-averse. Provide justification by filling out the table below. Averse is just the opposite of “seeking”.                   
Specifically, it means “having a strong dislike for something,” in this case, risk. 
 
Example solution​: 

 Risk-seeking: Risk-averse: 

Lottery [1/2, 0; 1/2, 2] [1/2, 0; 1/2, -2] 

Utility of lottery 2
1 * 03 + 2

1 * 23 = 4  −2
1 * 03 + 2

1 * (− )2 3 = 4  

Utility of expected 
value of lottery 

)( 2
1 * 0 + 2

1 * 2 3 = 1  − ) −( 2
1 * 0 + 2

1 * 2 3 = 1  

 
Solution explanation​: In general, for the given utility function, any lottery that can only take nonnegative values is                  
risk-seeking, and any lottery that can only take on nonpositive values is risk-averse. (Lotteries that can take on both                   
positive and negative values require a bit more effort to assess.) 
The intention was for students to identify that, because the utility function is an odd function, simply negating the                   
risk-seeking lottery would acquire a risk-averse function. 
Common Mistakes: 

● Not knowing how to identify a risk-seeking vs risk-averse function. 
● More specifically: providing a fixed value as a lottery. (Note that we don’t consider fixed values as                 

lotteries, but even if we did, such a lottery would never, under any utility function, be anything other than                   
risk-neutral.) 

● Not knowing what “utility of lottery” vs “utility of expected value of lottery” means; more students had                 
trouble with “utility of expected value of lottery”. 

● When calculating the expected value of the lottery: some students gave lotteries with a 50-50 chance                
between two rewards, correctly divided by two when calculating E[L], but then divided by two again after                 
calculating U(E[L]).  

Advice: 
● As noted above, having one lottery be the negative version of the other halves the needed amount of                  

computation for this problem. 
● In general, choosing lotteries with easy numbers makes computation easier as work, For example, is              03   

easy to compute; is slightly less so. Multiple students had 100 as an outcome, and then lost a 0 or had   53                   
some other careless error when calculating .1003  

● Similarly, choosing simple lotteries (e.g. only two possible outcomes that are equally likely) simplifies              
things as well. 
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6. Games / Mini-Max: The Potato Game (16 pts) 
Aldo and Becca are playing the game below, where the left value of each node is the number of potatoes that Aldo                      
gets, and the right value of each node is the number of potatoes that Becca gets (i.e. Aldo: left, Becca: right). Unlike                      
prior scenarios where having more potatoes results in more utility, Becca and Aldo will have a more complex view                   
of what makes a “good” distribution of potatoes.  
 
Becca will use the following thought process to decide which move to take:  

● Among all choices where she gets ​at least as many potatoes as Aldo, she’ll pick the one that maximizes                   
Aldo’s number of potatoes (very nice!).  

● If there are no choices where she gets ​at least as many potatoes as Aldo, she’ll simply maximize her own                    
potato count (ignoring Aldo’s value).  

 
Aldo will do the same thing, but substituting “he” for “she”, “her” for “his”, and “Becca” for “Aldo”. The rules                    
above effectively tell us how Becca (and Aldo) rank the utility of any set of choices.  
 
i) (4 pts) Fill in the blanks below with the choice that each player would make at each stage. Assume that both Aldo                       
and Becca are trying to maximize their own utility as described above. 
 

 
 
ii) (3 pts) Assume that Aldo and Becca know that ​the sum at any leaf node is no more than 10​. Cross out the                        
edges to any nodes that can be pruned (if none can be pruned then write “no pruning possible” ​below the tree​). 
 
 

 
 

 
iii) (3 pts) Describe a general rule for pruning edges, assuming that the sum at any leaf node is no more than 10. 
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Solution: ​Prune all remaining edges after seeing a node with (5, 5). 
Solution explanation: ​Since the sum at any leaf node is no more than 10, we know (5, 5) is the best possible                      
(utility-maximizing) distribution of potatoes for ​both players, so we do not need to consider any other nodes. Note                  
that based on the utility calculation rules, (5, 5) is better than other equal-potato distributions, like (4, 4) or (3, 3). 
 
iv) (4 pts) Suppose that ​Becca attempts to minimize Aldo’s utility instead of maximizing her own utility, and                  
that Aldo knows this, and tries to maximize his own utility -- taking into account Becca’s strategy​. Repeat part                   
ii. There is no need to cross out edges that are pruned. 

 

 
 

 
 
v) (2 pts) Suppose that ​Becca chooses uniformly randomly and Aldo knows this and tries to maximize his own                   
utility -- taking into account Becca’s strategy​. Which move will Aldo make to maximize his expected utility,                 
assuming he treats Becca as a chance node: left, middle, or right? If there is not enough information, pick “Not                    
Enough Information”. 
 
◯ ​Left              ​◯ ​  Middle                ​◯ ​  Right           ​⚫ ​  Not Enough Information 
 
Solution: ​We do not know what Aldo’s specific utility function is, so we lack information to calculate his average                   
utility between two outcomes, which we need to compute the assigned value for a chance node. 
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7. The Spice Must Flow (19 pts)  
i) (3 pts) Suppose we have a robot that has 5 possible actions: {↑, ↓, ←, →, Exit}. If the robot picks a direction, it                         
has an ​80% chance of going in that direction, a ​10% chance of going 90 degrees counterclockwise of the direction                    
it picked (e.g. picked →, but actually goes ↑), and a ​10% chance of going 90 degrees clockwise of the direction it                      
picks.  
 
If the robot hits a wall, it does not move this timestep, but time still elapses. For example, if the robot picks ↓ in                        
state B1 and is ‘successful’ (80% chance), it will hit the wall and not move this timestep. As another example, if it                      
picks → in state B1, but gets the 10% chance of going down, it will hit the wall and not move this timestep 
 
In states B1, B2, B3, and B4, the set of possible actions is {↑, ↓, ←, →}. In states A3 and B5, the only possible                         
action is {Exit}. Exit is always successful. The blackened areas (A1, A2, A4, and A5) represent walls. 
 
All transition rewards are 0, except R(A3, Exit) = -100, R(B5, Exit) = 1. 
 
In the boxes below​, draw an optimal policy for states B1, B2, B3, and B4, if there is no discounting, i.e.                     .γ = 1  
Use the symbols {↑, ↓, ←, →}. 

 
Solution: Any policy that went down at B3 and that never went left would work (i.e. guarantee never landing in the                     
A3 exit and eventually reach the B5 exit). 
ii) (2 pts) Give the expected utility for states B1, B2, B3, and B4 under the policy you gave above. 

V*(B1): ____​1​___ V*(B2): ____​1​___ V*(B3): ____​1​___ V*(B4): ____​1​___ 
Solution: There is no discounting, so we don’t have to worry about how long it takes to get to the exit; as long as                        
we can guarantee that we will ​eventually reach the good exit (as we can with the above optimal policy), the optimal                     
value of every state is going to be 1. 
iii) (2.5 pts)What is V*(B4), the expected utility of state B4, if we have a discount and use the optimal                0 < γ < 1     
policy? Give your answer in terms of .γ  

V*(B4):         __________ _________ 
Solution:​ Any optimal policy requires going right from B4. We can calculate this in one of two ways: 
Direct Approach​: The expected reward from B4 is equal to where is the number of time steps until we get to          γN   N            
B5; following the optimal policy, we have following a geometric distribution with . Thus, we can       N       .8p = 0     
calculate: 

(B4) [γ ] (Geom(0.8) ) .8γV * = E Geom(0.8) = ∑
∞

i=1
γi * P = i = 0 ∑

∞

i=0
(0.2γ)i = 0.8γ

1−0.2γ  

Recurrence Approach​: If we try to go right and move successfully, we will get a reward of ; otherwise, we are                 γ * 1     
at the same location (and have expected reward ). Thus, we can use the recurrence to get        (B4)γ * V *          

, which we can solve to get .(B4) .8 .2 (B4)V * = 0 * γ + 0 * γ * V * (B4)V * = 0.8γ
1−0.2γ  
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Part B: Spice. ​Now suppose we add a sixth special action SPICE​. This action has a special property that it always                     
takes the robot ​back to its current state​, with a reward of 0. This action might seem useless, except for one thing -                       
the robot will always get its top preference on its next action (instead of being subject to noise). 
 
For example, suppose that the robot is in state ​s1 and picks action ​a which has a chance ​p2 of moving to ​s2​, and a                         
chance ​p3 of moving to ​s3​. If the robot takes the ​SPICE action at timestep t, and ​a at timestep , the robot will                    t + 1     
not end up randomly in ​s2 or ​s3​, but will instead go to its ​preference of ​s2 ​or ​s3​. It will still collect R(​s1​, ​a​,                         
s’​), which is unchanged. Preferring ​s2 or ​s3 does not take an additional time step, e.g. if the robot is in B1 at                       
timestep 0, chooses SPICE, then chooses ↓ but prefers the outcome B2, the robot arrives in B2 at timestep 2.  
 
The powers granted by ​SPICE ​last one timestep. ​SPICE​ may be used any number of times. 
 
i) (2 pts) Give an optimal policy for B1, B2, B3, and B4, assuming no discounting, i.e. ​On the left of each                 .γ = 1       
slash, write the optimal action if the previous action was not SPICE​, and on the ​right side of each slash​, write the                      
optimal action if the previous action was ​SPICE, assuming the robot always “prefers” the outcome that points                 
in the same direction as its action (e.g. if it picks →, it prefers going right)​. In total, you should write 8 actions.                       
Use the symbols {↑, ↓, ←, →, S}, where “S” represents indicate the spice action. 

 
Solution: ​Since there was no discounting, there were a number of viable solutions. There were three particularly                 
common solutions. 

● 44% of students said to go right for every state except B3 without SPICE, where they said to use SPICE                    
instead. 

● 21% of students said to go right for every state except B3 without SPICE, where they said to go down                    
instead. 

● 19% of students simply said to always use SPICE to deterministically move right, regardless of location. 
There are a few actions that would specifically ​not​ work: 

● Going left, up, or right from B3 without SPICE all has a chance of accidentally leading to the bad exit. 
● Whether or not it works depends on the other part of the policy, but going “left” was often incorrect                   

because it would likely cause the robot to be caught in a loop and never be able to get to the exit. 
● If SPICE is active, and the policy dictates for the robot to use SPICE again, then the robot would definitely                    

be stuck in this state. 
In addition, some students assumed that the robot started at B1 (or somewhere else), and then only wrote policies                   
corresponding to a specific path. However, a policy should include an action for ​all states, even ones that might not                    
be reachable from a particular starting state (not that there is a starting state in this problem at all). 
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ii) (2.5 pts) Assuming we have a discount , what is V*(B4) if the previous action was not ​SPICE​? Give        0 < γ < 1             
your answer in terms of . It is OK to leave your answer in terms of a max operation.γ   
 

V*(B4): _________ __________________ 
Solution: ​There are two potential policies: the robot can try right repeatedly until it reaches the exit, or it can take                     
SPICE and move right. We thus want to compare the expected reward for each of these policies, and take the max                     
over the two. 
The value of the former is simply the same as the answer to part A.i: .0.8γ

1−0.2γ  
The value of the latter is equal to  (since we will deterministically claim a reward of 1 in three time steps).γ2  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
OFFICIAL RELAXATION SPACE. Draw or write anything here:  

13 



 
CS188 MIDTERM I, FALL 2016 

Last 4 SID: __________________   

Part C: Bellman Equations. (You can do this problem even if you didn’t do B, but it’ll be harder) 
 
In class, we derived the Bellman Equations for an MDP given below. 

 
You’ll notice these look slightly different than the version on your cheat sheet, but these equations represent exactly                  
the same idea. The only difference is that to improve the clarity of these equations, we’ve specified the sets over                    
which we are summing and maximizing. Specifically, ​S​(s, a) is the set of states that might result from the action (s,                     
a), and A​s is the set of actions that one can take in state s. ​For this problem, assume that A​s does not include the                         
special SPICE action. 
 
i) (3.5 pts) Derive Q*(s, SPICE). ​Assume that the previous action was not ​SPICE​. Your answer should have two                   
max operators in it. Hint: Consider drawing the diagram we used to derive the Bellman Equation. 
 
Solution: We need to choose the next action to take, and SPICE allows us to also choose the next state after that                      
action; this leads to the two maxes that the question suggests. The rest of the recurrence is like the usual Bellman                     
equation, except that we are getting  at a one time-step delay, and  is reached two time steps away:(s, , )R a s′ s′  

 
Common Mistakes: 

● Some students included transition probabilities, or took the sum over multiple successor states; this goes               
against the point of consuming SPICE. 

● Some students messed up on applying the discount factors correctly, most commonly forgetting the              
outermost .γ  

 
ii) (3.5 pts) Derive V*(s), the value of a state in this MDP. You should account for the the fact that the ​SPICE                       
action is available to the robot. Assume that the previous action was not ​SPICE​. 
 
Solution​: The optimal value of is acquired either by taking a non-SPICE action (where the recurrence is the same     s                
as the regular Bellman equation), or by taking SPICE. We can thus calculate this by taking the max over these two                     
possibilities: 

 
We can also merge these two cases into a single max expression: 
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8. The Reinforcement of Brotherly Love (9 pts) 
Consider two brother ghosts playing a game in an M-by-N grid world, Ghost Y is the Younger brother of Ghost O.                     
Each ghost takes 100 steps, trying to pet cats which randomly appear in the maze. The reward for the game is equal                      
to the number of cats petted. Each ghost has a policy for how to run through the maze. Ghost O being the older                       
brother has a policy that has a ​higher expected cumulative reward (i.e. ). However,           (s) (s)  ∀s V Y ≤ V O ∈ S   
Ghost O is not necessarily optimal (i.e. ). Ghost Y wants to learn from Ghost O instead       (s) (s)  ∀s V O ≤ V * ∈ S           
of starting from scratch.  
 
Part A: Q-Learning 
We will now explore how Ghost Y can achieve this, while performing Q-Learning​. Ghost Y starts out with a Q                    
function ​initialized randomly and wants to catch up to Ghost O’s performance. Denote the Q functions for each                  
Ghost as , . In order for Ghost Y to converge to the optimal policy, he must properly balance ​exploring and  QY  QO                   
exploiting​. Consider the following exploration strategy: At state s with probability 1- choose           ε   ax  Q (s, )m a Y  a  
otherwise choose .ax  Q (s, )m a O a   
 
 (2 pts) Is this guaranteed to converge to the optimal value function V*? Briefly justify.  
 
◯ ​Yes ​ /  ​⚫ ​No     _____________________________________________________ 
 
Solution: ​Ghost Y is not guaranteed to visit all states and actions infinite times each, which prevents it from                   
observing a potentially better action to apply. In particular, Ghost Y will only ever consider the initial                 

 action or the fixed , which may not include the true optimal action.ax  Q (s, )m a Y  a ax  Q (s, )m a O a  
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Part B: Model-Based RL 
Ghost Y decides model free learning is scary, and decides to try to learn a model instead. Ghost Y will watch Ghost                      
O try to catch Pac-Man and estimate the ​transition probabilities and ​rewards from Ghost O’s demonstrations (i.e.                 
learn a model for T(s,a,s’) and R(s,a,s’)).  
 
i) (2 pts) For Ghost Y to learn the correct and exact values of R(s,a,s') for all state/action/next_state transitions,                   
what must be true about the episodes he watches Ghost O perform? 
Solution: ​Ghost O must visit each state/action/next_state transition at least once. (Alternatively: ghost O must try                
each state/action pair enough times to see all possible successor states.) 
Common Mistakes​: 

● Seeing the transition (s,a,s’) once is enough to know exactly what R(s,a,s’) is. Some students incorrectly                
put that Ghost O needs infinite transitions, but that is only the case for learning T(s,a,s’) (as below.) 

● Some students only tried every action from every state once. This didn’t necessarily see every possible                
successor state. 

 
ii) (2 pts) For Ghost Y to learn the correct and exact values of T(s,a,s') for all state/action/next_state transitions,                   
what must be true about the episodes he watches Ghost O perform? 
Solution: ​Ghost O must visit each state/action/next_state transition infinite times each. (Alternatively: Ghost O              
must try each action from each state infinite times.) 
Common Mistakes​: 

● Some answers were not specific enough, and only said that ghost O visits each transition “many” or                 
“enough” times. 

● Some answers mentioned that there needed to be an infinite number of episodes, and some also noted that                  
the episodes must visit every transition at least once, but did not clearly specify that each transition is                  
visited infinite times. 

● Some answers said that each state needed to be visited infinite times, but did not talk about trying each                   
action​. 

● Conversely, some answers said to try each action infinite times. This is different from trying each action                 
from each state​ infinite times. 

● A few answers said that Ghost Y needs episodes that include every state/action pair, and needed to watch                  
these episodes infinite times. This does not guarantee that the finite number of episodes are representative                
of the true probability distributions. 

 
iii) (2 pts) Assuming T(s,a,s’) and R(s,a,s’) are learned ​exactly​, what algorithm/s below could be helpful for Ghost                  
Y to decide which actions to take from each state, based ​only​ on information in his learned model? 
             ⬛ ​Value Iteration     ​⬛ ​Policy​ ​Iteration     ​▢​ Q-Learning​ ​  ​▢​ TD-Learning   
Solution: ​Value Iteration and Policy Iteration. These both can generate a better policy and do not require further                  
information to be gathered.  
 
iv) (1 pt) Let π be any of the policies learned in part iii. Does following π result in maximized expected utility for                       
every state, i.e. is V​π​(s) = V*(s) for all states? [Consider all policies] 
 

⚫ Yes  ◯ No   ◯ Not enough information 
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