CS 188 Introduction to Al
Spring 2002 Stuart Russell Midterm SOlUtiOIlS

1. (20 pts.) True/False

(a)

(2) A system must think like a human in order to pass the Turing Test reliably.
False. It only has to act like a human.

(3) An agent that senses only partial information about the state cannot be perfectly rational.
False. Rationality and omniscience are different concepts.

(3) Every definite clause is a Horn clause.
True. A definite clause has exactly one positive literal; a Horn clause at most one.

(3) The clauses P(F(A,G(A))) and P(F(x,y)) resolve to produce the empty clause.
False. Although they unify, they are not complementary (neither is negated).

(3) h(n) =0 is an admissible heuristic for the 8-puzzle.
True. 0 is always an underestimate of the true cost for the 8-puzzle.

(3) There are STRIPS planning problems for which a partially ordered solution exists but no totally ordered
solution.
False. A partially ordered solution has the property that every linearization is a solution.

(3) The number of open conditions is an admissible heuristic for partial-order plans.
False. Open conditions can be satisfied by existing steps (no extra cost), and some actions might satisfy
more than one open condition because they have more than one useful effect.

2. (20410 pts.) Search
A basic Brio™ railway set contains the pieces shown in Figure 1. The task is to connect all these pieces into
a single railway that has no loose ends where a train could run off onto the floor and no overlapping tracks.

(a)

(10) Suppose that the pieces fit together exactly with no slack. Give a precise formulation of the task as a
search problem.

Initial state: one arbitarily selected piece (say a straight piece).

Successor function: for any open peg, add any piece type from remaining types. (You can add to open
holes as well, but that isn’t necessary as all complete tracks can be made by adding to pegs.) For a
curved piece, add in either orientation; for a fork, add in either orientation and (if there are two holes)
connecting at either hole. It’s a good idea to disallow any overlapping configuration, as this terminates
hopeless configurations early. (Note: there is no need to consider open holes, because in any solution these
will be filled by pieces added to open pegs.)

Goal test: all pieces used in a single connected track, no open pegs or holes, no overlapping tracks.
Step cost: one per piece (actually, doesn’t really matter).

(5) Identify a suitable uninformed search algorithm for this task and explain your choice.

All solutions are at the same depth, so depth-first search would be appropriate. (One could also use
depth-limited search with limit n — 1, but strictly speaking it’s not necessary to do the work of checking
the limit because states at depth n — 1 have no successors.) The space is very large, so uniform-cost and
breadth-first would fail, and iterative deepening simply does unnecessary extra work. There are many
repeated states, so it might be good to use a closed list.

(5) Ezplain briefly why removing any one of the “fork” pieces makes the problem unsolvable.

A solution has no open pegs or holes, so every peg is in a hole, so there must be equal numbers of pegs
and holes. Removing a fork violates this property. There are two other “proofs” that are acceptable: 1)
a similar argument to the effect that there must be an even number of “ends”; 2) each fork creates two



tracks, and only a fork can rejoin those tracks into one, so if a fork is missing it won’t work. The argument
using pegs and holes is actually more general, because it also applies to the case of a three-way fork that
has one hole and three pegs or one peg and three holes. The “ends” argument fails here, as does the
fork/rejoin argument (which is a bit handwavy anyway).

(5 extra credit) Give an upper bound on the total size of the state space defined by your formulation.
The maximum possible number of open pegs is 3 (starts at 1, adding a two-peg fork increases it by one).
Pretending each piece is unique, any piece can be added to a peg, giving at most 12+(2-16)+(2-2)+(2-2-2) =
56 choices per peg. The total depth is 32 (there are 32 pieces), so an upper bound is 168%2/(12!-16!-2!-2!)
where the factorials deal with permutations of identical pieces. One could do a more refined analysis to
handle the fact that the branching factor shrinks as we go down the tree, but it is not pretty.

(5 extra credit) Now consider the real problem, in which pieces don’t fit together exactly but allow for up
to 10 degrees of rotation to either side of the “proper” alignment. Explain how to formulate the problem
so it could be solved by simulated annealing.

We need a complete-state formulation, so let the states be any configuration of the 32 pieces. We need
discrete operators, which remove any piece and reconnect it anywhere else; and continuous operators,
which change the angle of any joint by some real-valued angle. (Unfortunately, especially for closed loops,
moving one joint necessarily moves some or all of the others, so we need to be careful how this is carried
out.) We need a heuristic function, which could penalize open pegs, amount of overlapping track, sum of
joint distortion angles, number of disjoint connected components.

3. (20 pts.) Propositional Logic
Consider the following sentence:

(a)

(b)

[(Food = Party)V (Drinks = Party)] = [(Food A Drinks) = Party]

(6) Determine whether this sentence is valid, satisfiable (but not valid), or unsatisfiable, using enumeration.
(You may abbreviate the proposition symbols in your answer.)
A simple truth table has eight rows, and shows that the sentence is true for all models and hence valid.

(6) Convert the left-hand and right-hand sides of the main implication into CNF, showing each step, and
explain how the results confirm your answer to (a).
For the left-hand side we have:

(Food = Party)V (Drinks = Party)
(=Food V Party) V (-Drinks V Party)
(=Food V Party V —~Drinks V Party)
(=Food V ~Drinks V Party)

and for the right-hand side we have

(Food A\ Drinks) = Party
—(Food A Drinks) V Party
(=Food V ~Drinks) V Party
(=Food V ~Drinks V Party)

The two sides are identical in CNF, and hence the original sentence is of the form P = P, which is valid
for any P.

(8) Prove your answer to (a) using resolution.
To prove that a sentence is valid, prove that its negation is unsatisfiable. I.e., negate it, convert to CNF,
use resolution to prove a contradiction. We can use the above CNF result for the LHS.

=[[(Food = Party)V (Drinks = Party)] = [(Food A Drinks) = Party]]
[(Food = Party)V (Drinks = Party)] A =[(Food A Drinks) = Party]
(=Food V —~Drinks V Party) A Food A\ Drinks A —=Party

Each of the three unit clauses resolves in turn against the first clause, leaving an empty clause.



4. (20 pts.) First-order logic
For each of the following sentences in English, decide if the accompanying first-order logic sentence is a good
translation. If not, explain why not and correct it.

(a)

(d)

“Any apartment in Berkeley has lower rent than some apartments in Palo Alto.”
Vz [Apt(z) A In(x, Berkeley)] = 3y [[Apt(y) A In(x, PaloAlto)] = (Rent(z) < Rent(y))]

Incorrect.
Simple error: should say In(y, PaloAlto) not In(x, PaloAlto).
Classic error: using = with 3. Should be A.

“There is exactly one apartment in Palo Alto with rent below $1000.”

dz Apt(z) A In(z, PaloAlto) AVy [Apt(y) A In(y, PaloAlto) A (Rent(y) < Dollars(1000))] = (y=xz)

Incorrect.

The sentence does not say that x has rent below $1000; it is true if there are no such apartments.
There should be parentheses enclosing Vy ... (y =x).

We gave full credit for noticing either of these errors.

“If an apartment is more expensive than all apartments in Berkeley, it must be in San Francisco.”
Vo Apt(z) ANy Apt(y) A In(y, Berkeley) A (Rent(xz) > Rent(y))] = In(z, SanFrancisco)

Incorrect.
Classic error: using A with V. Should be = (Rent(z) > Rent(y)).

(6) Which of the first-order logic sentences above may be converted to definite clauses?
Intuitively, all three have just one positive conclusion, so all three are (sets of) definite clauses. Just to
make sure, convert to CNF:

—Apt(z) V ~In(z, Berkeley) V -~ Apt(f(z)) V ~In(x, PaloAlto) V (Rent(z) < Rent(f(z)))
Apt(g) A In(g, PaloAlto) A (- Apt(y) V —In(y, PaloAlto) V ~(Rent(y) < Dollars(1000)) V (y=g))
—Apt(x) V —Apt(f(z)) V ~In(f(z), Berkeley) V ~(Rent(x) > Rent(f(z))) V In(z, SanFrancisco)

5. (20 pts.) Planning
Consider a robot whose operation is described by the following STRIPS operators:

(a)

(b)

Op(AcTiON:Go(z,y), PRECOND: At(Robot, z), EFFECT:~At(Robot, x) A At(Robot, y))
Op(AcTiON: Pick(0), PRECOND: At(Robot, ) A At(o,z), EFFECT: - At(0, z) A Holding(o))
Op(AcTioN:Drop(o), PRECOND: At(Robot, x) A Holding(o), EFFECT: At(0,z) A ~Holding(0))

(5) The operators allow the robot to hold more than one object. Show how to modify them with an
EmptyHand predicate for a robot that can hold only one object.
EmptyHand is not affected by Go, so we modify just the Pick and Drop operators:

Op(AcTiON: Pick(0), PRECOND: Empty Hand() A At(Robot, x) A At(o, ),
ErreECcT:~EmptyHand() A —At(o, z) A Holding(0))
Op(AcTiOoN:Drop(o), PRECOND: At(Robot, x) A Holding(o),
ErreECT: EmptyHand() A At(o,z) A ~Holding(o))

Notice that STRIPS does not allow negated preconditions, so we could not use ~Holding(p) as a precon-
dition for Pick(o); this is why we need EmptyHand. Also, we cannot use —~Empty Hand as a precondition
of Drop(o); but this is no problem because we already have Holding(o) as a precondition.

(5) Assuming that these are the only actions in the world, write a successor-state axiom for EmptyHand.
In English, the hand is empty after doing an action if it was empty before and the action was not a
successful Pick; or if an object was dropped.

EmptyHand(Result(a,s)) < [(EmptyHand(s) A—Jo,z (At(Robot,x) A At(o,z) A a= Pick(0)))

vV (Holding(o,s) A a= Drop(0))]



START

EH At(A,Rm1) At(O,Rml) At(R,Rm1l)

EH At(R,X) At(AX) EH At(R,X) At(O,X)
Pick(A) Pick(O)
~EH ~At(AX) H(A) ~EH ~At(O,x) H(O)
At(R,RM2) H(A) At(R,Rm2) H*O)
Drop(A) Drop(0)
EH At(A,Rm2) ~H(A) EH At(O,Rm2) ~H(O)

At(A,Rm2) At(O,Rm2)

FINISH

Fig. 2: Partial-order plan exhibiting a threat by Pick(O) to the EmptyHand link from Start to Pick(A).
(c) (10) Suppose the initial state has
At(Apple, Room,) A At(Orange, Roomy) A At(Robot, Room)
and the goal is
At(Apple, Rooms) A At(Orange, Rooms)

Consider the operation of the POP algorithm on this problem, for the STRIPS operators as modified in
part (a). Diagram the partial plan that has been constructed at the point where the first threat to a causal
link appears. Explain what the threat is and how it can be resolved (if at all).

One possibility is shown in Figure 2. From the empty plan, we add the two drop actions to put the apple
and orange in Room 2. Each requires that the robot be holding the object to be dropped, so we add the
two Pick actions. Each has a precondition that the hand be empty. As soon as we achieve one of those
from the Start state, it is threatened by the other Pick action—essentially, the threat arises because the
robot can hold only one object. We cannot order Pick(O) before Start, so it is ordered after Pick(A).

Another possible solution involves adding Go(z, Roomz) actions instead of Pick actions. As soon as we
satisfy the At(Robot,z) precondition of one Go action using the At(Robot, Room;) effect of Start, we
have a possible threat to this causal link from the —At(Robot,x) of the other go action (see p.357 for a
discussion of possible threats). It becomes a definite threat after we satisfy the At(Robot,x) precondition
of the second Go action using the At(Robot, Room,) effect of Start. Because the threats apply in both
directions, there is no way to resolve them both and the search must backtrack.

It is important to remember that an effect of one action threatens a complementary precondition of
another action that is protected by a causal link covering an interval into which the first action might
fall. Many people wrote down a complete plan (which was not asked for) and described conflicts between
two simultaneous Pick actions rather than mentioning any specific causal link. Many people constructed
plans by forward search from the start, which is not how the POP algorithm works (although it is one
possible way to construct plans).



