(o 188 Introduction to Final Exam
Spring 2011 Artificial Inteuigence Solutions

Q1. |24 pts] The OMNIBUS

Each question is worth 1 point. Leaving a question blank is worth O points. Answering a multiple choice
question with k possible choices incorrectly is worth —1/(k — 1) points (so —1 points for true/false
questions, —1/2 for questions with three options, etc.). This gives you an expected value of 0 for
random guessing.

(a) [1 pt] CS 188

Circle the best motto for Al

1. ‘ Maximize your expected utilities.

(b) [5 pts] Search

(i) [true or false] Uniform-cost search will never expand more nodes than A*-search.
(ii) [true or false] Depth-first search will always expand more nodes than breadth-first search.
(iii) [true or false] The heuristic h(n) = 0 is admissible for every search problem.

(iv) [true or false] The heuristic h(n) = 1 is admissible for every search problem.

(v) [true or false] The heuristic h(n) = ¢(n), where ¢(n) is the true cheapest cost to get from the node n to a
goal state, is admissible for every search problem.

(c) [2 pts] CSPs

(i) [true or false] The most-constrained variable heuristic provides a way to select the next variable to assign
in a backtracking search for solving a CSP.

(ii) [true or false] By using the most-constrained variable heuristic and the least-constraining value heuristic
we can solve every CSP in time linear in the number of variables.

(d) [3 pts] Games

(i) [true or false] When using alpha-beta pruning, it is possible to get an incorrect value at the root node by
choosing a bad ordering when expanding children.

(ii) [true or false] When using alpha-beta pruning, the computational savings are independent of the order in
which children are expanded.

(iii) [true or false] When using expectimax to compute a policy, re-scaling the values of all the leaf nodes by
multiplying them all with 10 can result in a different policy being optimal.

(e) [3 pts] MDPs For this question, assume that the MDP has a finite number of states.

(i) [true or false] For an MDP (S, A, T,~, R) if we only change the reward function R the optimal policy is
guaranteed to remain the same.

(ii) [true or false] Value iteration is guaranteed to converge if the discount factor (v) satisfies 0 < v < 1.

(iii) [true or false] Policies found by value iteration are superior to policies found by policy iteration.

(f) [2 pts] Reinforcement Learning
(1) [true or false] Q-learning can learn the optimal Q-function Q* without ever executing the optimal policy.

(ii) [true or false] If an MDP has a transition model T' that assigns non-zero probability for all triples T'(s, a, )
then @Q-learning will fail.




(g) [8 pts] Bayes’ Nets For each of the conditional independence assertions given below, circle whether they are

guaranteed to be true, guaranteed to be false, or cannot be determined for the given Bayes’ net.
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Q2. |21 pts] HMM: Where is the key?

The cs188 staff have a key to the homework bin. It is the master key that unlocks the bins to many classes, so we
take special care to protect it.

Every day John Duchi goes to the gym, and on the days he has the key, 60% of the time he forgets it next to the
bench press. When that happens one of the other three GSIs, equally likely, always finds it since they work out right
after. Jon Barron likes to hang out at Brewed Awakening and 50% of the time he is there with the key, he forgets
the key at the coffee shop. Luckily Lubomir always shows up there and finds the key whenever Jon Barron forgets it.
Lubomir has a hole in his pocket and ends up losing the key 80% of the time somewhere on Euclid street. However,
Arjun takes the same path to Soda and always finds the key. Arjun has a 10% chance to lose the key somewhere in
the AI lab next to the Willow Garage robot, but then Lubomir picks it up.

The GSIs lose the key at most once per day, around noon (after losing it they become extra careful for the rest of
the day), and they always find it the same day in the early afternoon.

(a) [2 pts] Draw on the left the Markov chain capturing the location of the key and fill in the transition probability
table on the right. In this table, the entry of row JD and column JD corresponds to P(X;11 = JD|X; = JD),
the entry of row JD and column JB corresponds to P(X;y1 = JB|X; = JD), and so forth.
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Monday early morning Prof. Abbeel handed the key to Jon Barron. (The initial state distribution assigns probability

1 to X = JB and probability 0 to all other states.)

(b) [4 pts] The homework is due Tuesday at midnight so the GSIs need the key to open the bin. What is the prob-
ability for each GSI to have the key at that time? Let Xy, Xyon and X1ye be random variables corresponding
to who has the key when Prof. Abbeel hands it out, who has the key on Monday evening, and who has the key

on Tuesday evening, respectively. Fill in the probabilities in the table below.

P(Xy)

P<XMon>

P<XTue>

JD
JB
LB
AS

o O = O

0.0
0.5
0.5
0.0

Ox.4+.5%x.0+.5%x.04+0x.0 = .00
0%x.24+.5%x.5+.5%x.0+0%.0 = .25
O0%x.24+.5%.5+.5%x.240x.1 = .35
0%x.24.5%.0+.5%.84+0%.9 = .40




(c) [3 pts] The GSIs like their jobs so much that they decide to be professional GSIs permanently. They assign an
extra credit homework (make computers truly understand natural language) due at the end of time. What is
the probability that each GSI holds the key at a point infinitely far in the future. Hint:

/ /
Poo(x> = Zx’ P(Xnext day = L | Xcurrent day = T )Poo(x )
The goal is to compute the stationary distribution. From the Markov chain it is obvious that P, (JD) = 0 and
P (JB) =0. Let x = Poo(LB) and y = P, (AS). Then the definition of stationarity implies
=02z + 0.1y
y = .8z 4+ 9y

Since we must have z > 0 and y > 0, we can choose any x > 0 and solve for y. For example, z = 1 yields
y = 8, which normalized results in P (LB) =1/9 and P, (AS) = 8/9.

Every evening the GSI who has the key feels obliged to write a short anonymous report on their opinion about the
state of Al. Arjun and John Duchi are optimistic that we are right around the corner of solving Al and have an 80%
chance of writing an optimistic report, while Lubomir and Jon Barron have an 80% chance of writing a pessimistic
report. The following are the titles of the first few reports:

Monday: Survey: Computers Become Progressively Less Intelligent (pessimistic)
Tuesday: How to Solve Computer Vision in Three Days (optimistic)

(d) [4 pts] In light of that new information, what is the probability distribution for the key on Tuesday midnight
given that Jon Barron has it Monday morning? You may leave the result as a ratio or unnormalized.

We are trying to perform inference in an HMM, so we must simply perform the forward algorithm. The HMM
described in our problem is

The calculations are as follows:

‘ ‘ P(Xl\r’lon) ‘ P(Xl\'lf)n ‘ R[\/lrm, :pCb‘Slm) ‘ P(XTue‘RJW(m, :pCSShn-) ‘ P(XTue|R1\Jun :pcSSiIn'aRT'ufi :Optinl'> ‘

JD 0.0 o 0.0%0.2 < 0.0 =0.0 0.00 x 0.00 % 0.8 = 0.00/0.44
JB 0.5 x0.5%0.80x0.4=0.5 0.25 x 0.25 % 0.2 = 0.05/0.44
LB 0.5 x 0.5%x0.8x0.4=0.5 0.35 x 0.35% 0.2 = 0.07/0.44
AS 0.0 x 0.0%0.2 < 0.0=0.0 0.40 x 0.40 % 0.8 = 0.32/0.44

On Thursday afternoon Prof. Abbeel noticed a suspiciously familiar key on top of the Willow Garage robot’s head.
He thought to himself, “This can’t possibly be the master key.” (He was wrong!) Lubomir managed to snatch the
key and distract him before he inquired more about it and is the key holder Thursday at midnight (i.e., X7y, = LB).
In addition, the Friday report is this:

Thursday: 7?7 (report unknown)
Friday: AT is a scam. I know it, you know it, it is time for the world to know it! (pessimistic)

(e) [3 pts] Given that new information, what is the probability distribution for the holder of the key on Friday at
midnight?

In (the extension of) the HMM above, Ryny, 1L Xgyi | X1ha, S0 we compute
‘ ‘ P(X'l‘hu) ‘ P(XF,-i) ‘ P(Xpri ‘ RFM, :pOSSiIIl.) ‘

JD 0 0 x 0.2%x0.0=0.0
JB 0 0 o 0.8%0.0=0.0
LB 1 0.2 x 0.8%x0.2=0.5
AS 0 0.8 x 0.2%x0.8=0.5



(f) [3 pts] Prof. Abbeel recalls that he saw Lubomir holding the same key on Tuesday night. Given this new
information (in addition to the information in the previous part), what is the probability distribution for the
holder of the key on Friday at midnight?

The answer does not change because Xmye 1L Xpyi | Xhu

(g) [2 pts] Suppose in addition that we know that the titles of the reports for the rest of the week are:

Saturday: Befriend your PC now. Soon your life will depend on its wishes (optimistic)
Sunday: How we got tricked into studying AI and how to change field without raising suspicion (pessimistic)

Will that new information change our answer to (f)? Choose one of these options:

1. | Yes, reports for Saturday and Sunday affect our prediction for the key holder on Friday.

2. No, our prediction for Friday depends only on what happened in the past.



Q3. 9 pts] Sampling

Assume the following Bayes net, and the corresponding distributions over the variables in the Bayes net:

()

(b)

1/2

(c)

(d)

| A B| C[PCIAB) |

P(4) +a | +b | +c 0

fa | 1/5 +a | +b | —c 1 | C | D [PDIO) ]

—a | 4/5 ta | —b | +c 0 e | +d | 1/2
+a | =b | —c 1 +c | —d 1/2

| B [ P(B) | —a | +b | +c 2/5 —c | +d 1/4

+b | 1/3 —a | +b | —c 3/5 —c | —d 3/4

b | 2/3 —a | =b | +¢ 1/3

- —a | =b| —c 2/3

[1 pt] Your task is now to estimate P(+c| — a, —b, —d) using rejection sampling. Below are some samples that
have been produced by prior sampling (that is, the rejection stage in rejection sampling hasn’t happened yet).
Cross out the samples that would be rejected by rejection sampling:

+a—b —c —d —a +b 4 +d
—a —b +c¢ —d —-a —-b —c¢ —d

[2 pts] Using those samples, what value would you estimate for P(4c| — a, —b, —d) using rejection sampling?

[3 pts] Using the following samples (which were generated using likelihood weighting), estimate P(+c | —a, —b, —d)
using likelihood weighting, or state why it cannot be computed.

—a —-b —c —d

—a —-b +c —d

—a —b +c¢ —d
We compute the weights of each solution, which are the product of the probabilities of the evidence variables
conditioned on their parents.

wy = P(—a)P(=b)P(—d | —c) =4/5%2/3%3/4
wy = w3 = P(—a)P(=b)P(—d | +c) =4/5%2/3%1/2

so normalizing, we have (we + ws) /(w1 + wa + w3) = 4/7.

[3 pts] Below are three sequences of samples. Circle any sequence that could have been generated by Gibbs
sampling.

Sequence 1 Sequence 2 Sequence 3
1:| —a —-b —c +d 1:] —a —-b —-c +d 1:] —a —-b —c +d
2: | —a —-b —c¢ +d 2: | —a —-b —c¢ —d 2: | —a -b —c —d
3:| —a —=b +H4c +d 3:| —a —b +H4c +d 3:] —a +b —c —d

The first and third sequences have at most one variable change per row, and hence could have been generated
from Gibss sampling. In sequence 2, the second and third samples have both C and D changing.



Q4. [12 pts] Worst-Case Markov Decision Processes

Most techniques for Markov Decision Processes focus on calculating V*(s), the maximum expected utility of state
s (the expected discounted sum of rewards accumulated when starting from state s and acting optimally). This
maximum expected utility V*(s) satisfies the following recursive expression, known as the Bellman Optimality
Equation:

V*(s) = mngT(s, a,s') [R(s,a,s") +yV*(s)].

In this question, instead of measuring the quality of a policy by its expected utility, we will consider the worst-case
utility as our measure of quality. Concretely, L™ (s) is the minimum utility it is possible to attain over all (potentially
infinite) state-action sequences that can result from executing the policy 7 starting from state s. L*(s) = max, L™(s)
is the optimal worst-case utility. In words, L*(s) is the greatest lower bound on the utility of state s: the discounted
sum of rewards that an agent acting optimally is guaranteed to achieve when starting in state s.

Let C(s,a) be the set of all states that the agent has a non-zero probability of transferring to from state s using
action a. Formally, C(s,a) = {s’ | T(s,a, s’) > 0}. This notation may be useful to you.

(a) [3 pts] Express L*(s) in a recursive form similar to the Bellman Optimality Equation.

L*(s) =max min [R(s,a,s") +vL"(s')] v
a s'eC(s,a)

(b) [2 pts] Recall that the Bellman update for value iteration is:

Vit1(s) < mngT(s, a,s")[R(s,a,s") +Vi(s')]

Formally define a similar update for calculating L;1(s) using L;.

L;11(s) + max Igi(n : [R(s,a,s") +vL;i(s")) (2)
a s'eC(s,a

(c) [3 pts] From this point on, you can assume that R(s,a,s’) = R(s) (rewards are a function of the current state)
and that R(s) > 0 for all s. With these assumptions, the Bellman Optimality Equation for Q-functions is

Q*(s,a) = R(s) + Z/T(s, a,s’) [’y max Q* (¢, a/)}

Let M(s,a) be the greatest lower bound on the utility of state s when taking action a (M is to L as @ is to
V). (In words, if an agent plays optimally after taking action a from state s, this is the utility the agent is
guaranteed to achieve.) Formally define M*(s,a), in a recursive form similar to how Q* is defined.

M*(s,a) = R(s) + mi(n >max M*(s',a") (3)
s’eC(s,a) a’



(d) [2 pts] Recall that the Q-learning update for maximizing expected utility is:

(f)

Qs,a) + (1 - a)Q(s,a) + a (R(s) +ymax Q(s, a,)) ’

where « is the learning rate, (s,a,s’, R(s)) is the sample that was just experienced (“we were in state s, we
took action a, we ended up in state s’, and we received a reward R(s)). Circle the update equation below that
results in M (s,a) = M*(s,a) when run sufficiently long under a policy that visits all state-action pairs infinitely
often. If more than one of the update equations below achieves this, select the one that would converge more
quickly. Note that in this problem, we do not know T or C' when starting to learn.

(i) C(s,a) + {s'}UC(s,a) (i.e. add ¢’ to C(s,a))

M(s,a) «+ (1 —a)M(s,a) +a | R(s) +~ Z max M (s, a’)
s'eC(s,a) ¢

(i) C(s,a) « {'}UC(s,a) (i.e. add s’ to C(s,a))

M(s,a) « (1 —a)M(s,a) + <R(s) +~ min max M(s', a’))
s’eC(s,a) a’

(iii) | C(s,a) + {'}UC(s,a) (i.e. add s’ to C(s,a))

M(s,a) «+ R(s) +~ ncn(n  max M(s',a")
s’e€C(s,a) a’

(iv) M(s,a) + (1 —a)M(s,a) + amin {M(s, a), R(s) + 7 max M(s', a’)} .

The updates (ii) and (iii) will eventually converge, but the third will do so faster, because the environment has
deterministic rewards and we only care about the minimax reward. Thus if we ever observe a reward R(s), we
know it is correct, and if we see that the state s’ can follow state s after taking action a, we must include it in
our update. (iii) will be faster, though—it does not use a step size « to slow the rate.

[1 pt] Suppose our agent selected actions to maximize L*(s), and v = 1. What non-MDP-related technique
from this class would that resemble? (a one word answer will suffice)

Minimax (really, maximin)

[1 pt] Suppose our agent selected actions to maximize L3(s) (our estimate of L*(s) after 3 iterations of our
“value-iteration”-like backup in section b) and v = 1. What non-MDP-related technique from this class would
that resemble? (a brief answer will suffice)

three-ply (depth limited) minimax



Q5. [19 pts| Tree-Augmented Naive Bayes

In section, we twice have tried to help Pacbaby distinguish his father, Pacman,
from ghosts. Now Pacbaby has been transported back in time to the 1970s!
Pacbaby has noticed that in the 1970s, nearly everyone who wears sunglasses also
has a moustache, whether the person in question is Pacman, a ghost, or even a
young Ms. Pacman. So Pacbaby decides that it’s time for an upgrade from his
Naive Bayes brain: he’s getting a tree-augmented Naive Bayes brain so that the
features he observes don’t have to be independent.

In this question, we’ll explore learning and inference in an abstraction of Pacbaby’s
new brain. A tree-augmented Naive Bayes model (TANB) is identical to a Naive
Bayes model, except the features are no longer assumed conditionally independent
given the class Y. Specifically, if (X1, Xo,...,X,,) are the variables representing
the features that Pacbaby can observe, a TANB allows X1,..., X, to be in a tree-
structured Bayes net in addition to having Y as a parent. The example we explore
is to the right.

(a) [1 pt] Suppose we observe no variables as evidence in the TANB above. What is the classification rule for the
TANB? Write the formula in terms of the CPTs (Conditional Probability Tables) and prior probabilities in the
TANB.

The solution is simply the maximal y according to the prior probabilites of y: argmax, P(y).

(b) [2 pts] Assume we observe all the variables X; = 1, X2 = %3,..., X = x¢ in the TANB above. What is the
classification rule for the TANB? Write the formula in terms of the CPTs and prior probabilites in the TANB.

We want the most probable y given the variables X7, ..., X4, which is (using the same reasoning as for Naive Bayes)
argmax P(y | z1,...,26)
Y
= argmax P(y,z1,...,26)
Yy

= argmax P(y)P(z1 | y)P(z2 | 21,y)P(23 | 22,y)P(24a | 22, y) P(25 | 24,9) P(26 | 24, Y)
Yy

The rubric for this question is all-or-nothing (correct/incorrect).

(c) [3 pts] Specify an elimination order that is efficient for the query P(Y | X5 = z5) in the TANB above (including
Y in your ordering). How many variables are in the biggest factor (there may be more than one; if so, list only
one of the largest) induced by variable elimination with your ordering? Which variables are they?

We can ignore the variables X3 and X§g, since when we marginalize them in the elimination order, they will sum to
1. Thus any elimination order including X3 or Xg is incorrect. Otherwise, we essentially just walk up the tree:

P(Y |25) x P(Y,25)= Y P(Y,z1,... %)
T1,T2,T3,T4,T6
=P(Y) Y Pl |Y)P(za|21,Y)P(3 | 22,Y)P(xs | 22, Y)P(ws | 24,Y)Plag | 24,Y)

L1y, Ta,X6

=P(Y) > P(x1|Y)P(z2|21,Y)P(a | w2, Y)P(as | 24,Y) Y Plas|21,Y) > Plag | 24,Y)

T1,T2,T4

Te6

=1
=P(Y)> Py |Y)Y Plag|21,Y))  Plaa| w2, Y)P(as | 24,Y)

So possible orders include Xy < X1 < Xo <YV, Xy < Xo < X7 <Y, X1 < Xo <Xy <Y,and X; < X4, < Xp, <Y.
Any order must start with one of X4 or Xj, then so long as X5 follows one of them it is correct. The last variable
must be Y (clearly).



Rubric: +1 point for having a correct order (may include Xg or X3, +1 point for not including X or X3, and +1
point for getting the correct factor size for the ordering provided by the student. Automatic loss of one point for
eliminating Xs.

(d) [3 pts] Specify an elimination order that is efficient for the query P(X3 | X5 = x5) in the TANB above (including
X3 in your ordering). How many variables are in the biggest factor (there may be more than one; if so, list
only one of the largest) induced by variable elimination with your ordering? Which variables are they?

Given that Xg is a child node of Xy, it marginalizes to 1 and has no effect on inference. So any elimination ordering
including Xg is incorrect. Other than that, we can explicitly compute the elimination by marginalizing, and we get

P(X3 | w5) o P(Xa,25) = Y Py)P(x1 | y)P(as | 21,y) P(Xs | 22,y)P(ws | 24,y) P(ws | 22,)

Z1,T2,T4,Y

=Y PW)Y P(Xs|z2y) ) Ple|y)Plaz | 21,y) Y Plas

51347y)P(.’174 ‘ x27y>'

The maximum factor size is 3; one such example above is (X4, X2,Y"). So one possible ordering is Xy < X; < X5 <
Y < Xj3. The possible orders must have one of X, and X; first, which yields a factor over (X2,Y") as well as factors
(X2,Y,X3) and (V). Then any ordering of X5,Y will be fine. X3 must clearly be last. Note that eliminating Y
early or X5 before eliminating one of X, and X7 will yield factors of size 4, so that is incorrect.

Rubric: +1 for a correct order (potentially including Xg), +1 for ignoring Xg, and +1 for calculating the correct
factor size of the provided order. Automatic loss of one point for each of eliminating X3 too early, for eliminating
X5, and failing to eliminate any variable that must be eliminated.

(e) [2 pts] Does it make sense to run Gibbs sampling to do inference in a TANB? In two or fewer sentences, justify
your answer.

No, it does not really make sense to perform Gibbs sampling. Inference is always efficient—factors are of size at most
3—because everything is a tree given the node Y. +2 for correct, +1 for indirect reason not to perform Gibbs.

(f) [2 pts] Suppose we are given a dataset of observations of Y and all the variables X7, ..., Xg in the TANB above.
Let C denote the total count of observations, C(Y = y) denotes the number of observations of the event ¥ = y,
C(Y =y, X; = ;) denotes the count of the times the event Y = y, X; = x; occurred, and so on. Using the C
notation, write the maximum likelihood estimates for all CPTs involving the variable Xj.

There are 3 CPTs involving X4: P(Xy | X2,Y), P(X5 | X4,Y) and P(Xg | X4,Y). Their estimates are
C(Xy=m4,Xo=12,Y =y)
C(Xy=u20,Y =vy)
C(Xs=u5,X4 =14,Y =)
C(Xy=m4,Y =y)
C(Xg =x6,Xq =14,Y =)
C(Xg=m4,Y =)
Rubric: 42 for all correct, +1 for getting at least 1, -.5 if denominators left as Z“ C( Xy =z0,Y =y, Xy = x4).

PXy=uz4| Xo=m0,Y =y) =

P(X5:J)5|X4:.1‘4,Y:y)=

P(X6:I6|X4:I4,Y:y):

(g) [2 pts] In the notation of the question above, write the Laplace smoothed estimates for all CPTs involving the
variable X4 (for amount of smoothing k).

The three CPTs are the same. Let | X;| denote the size of the domain of variable X;. Then
C(Xy=z4,Xo=m2,Y =y)+ £k
C(Xy =20,Y =y) + k| X4|
C(Xs=u5,Xy =24, =y) + k
C(Xy =24,Y =y) + k| X;5|
C(Xg=u6,X4 =m4,Y =y)+ k
C(X4 =1a4,Y = y) + k“X@l

P(X4:£L'4‘X2:£C27Y:y):

P(X5:335\X4:x47Y:y):

P(X(;:l‘ﬁ‘X4:I4,Y:y):

Rubric: +2 for all correct based on the above.
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(NB) (TANB)

(h) [2 pts] Consider the two graphs on the nodes Y (Pacbaby sees Pacman or not), M (Pacbaby sees a moustache),
and S (Pacbaby sees sunglasses) above. Pacbaby observes Y =1 and Y = —1 (Pacman or not Pacman) 50%
of the time. Given Y = 1 (Pacman), Pacbaby observes M = +m (moustache) 50% of the time and S = +s
(sunglasses on) 50% of the time. When Pacbaby observes Y = —1, the frequency of observations are identical
(i.e. 50% M = 4+m and 50% S = =+s). In addition, Pacbaby notices that when ¥ = +1, anyone with a
moustache also wears sunglasses, and anyone without a moustache does not wear sunglasses. If Y = —1, the
presence or absence of a moustache has no influence on sunglasses. Based on this information, fill in the CPTs
below (you can assume that Pacbaby has the true probabilities of the world).

For NB (left model) I For TANB (right model)
P(Y =
s [P =y e
5
1 5 — 5
-1 D :

P(M=m]|Y =vy)

P(M=m|Y =y) J =1 =1
y=1 y=-1 m=1 5 5
m=1 .5 .5 — 5 =
m=—-1] 5 5 m : 2
PS:S Y: ,M:m
PE=s[V =3) e
y=1 y=-1 m=1|m=—-1|m=1]| m=-—1
s=1 D .5 = =
—1 = 5 s=1 1 0 5 .5
5 : : s—= 1 0 1 5 5

Rubric: 41 for all of left side correct, +1 for all of right side correct. No partial credit.

(i) [2 pts] Pacbaby sees a character with a moustache and wearing a pair of sunglasses. What prediction does the
Naive Bayes model NB make? What probability does the NB model assign its prediction? What prediction
does the TANB model make? What probability does the TANB-brained Pacbaby assign this prediction? Which
(if any) of the predictions assigns the correct posterior probabilities?

We know for the NB model that P(Y =y | m,s) x P(Y = y,m,s) = (1/2)3 for any setting of Y, M, and S, so it
assigns probability 1/2 to both labels (hence no prediction). The TANB model has
M1 Qo . . 1M opry (/221 ify =1
PY=y|M=1,S=1)xP(M=1|Y =y)P(S=1| M =1,Y =y)P(y) { Q722172 ify— 1.

Normalizing, we see that the TANB assigns probability 2/3 to Y = 1, i.e. Pacman, and 1/3 to Y = —1. Since the
TANB model encodes all distributions over 3 variables, it assigns the correct posterior probabilities.

Rubric: +1 for correct NB estimate, +1 for correct TANB estimate, only +.5 if ignored normalization or assigned
un-normalized values to conditional probabilities P(Y =1| M =1,5=1) = .25.
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Q6. [10 pts] Finding Working Kernels
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The above pictures represent three distinct two-dimensional datasets with positive examples labeled as o’s and
negative examples labeled as x’s. Consider the following three kernel functions (where x = Bl ):
2

(i) Linear kernel: K(x,2) =a"

Z=X -zZ=x121 + Taz9
(ii) Polynomial kernel of degree 2: K(x,2) = (1 +2'2)?2 = (1+x - 2)?
(iii) RBF (Gaussian) kernel: K(z,z) = exp (—5iz ||z — z|?) = exp (— 52z (z — 2) T (z — 2))

(a) [6 pts] For each dataset (A, B, C) circle all kernels that make the dataset separable (assume o = .01 for the
RBF kernel): (Rubric: Score is max{6 — Hamming distance to correct selections, 0}.)

Dataset (A): @ (iii)
Dataset (B): (i) @ m

Dataset (C): (i) (ii) |(iii)
For parts (b) and (c), assume you train the perceptron using RBF (Gaussian) kernels: K (z, z) = exp (— 5tz ||z — z[|?).

You run the perceptron algorithm on dataset (C) until you either encounter no more errors on the training data or
you have encountered an error 1 million times and performed the associated update each time, whichever comes first.

T T T T
0 o0 o0 B0
=] =] =] =]
2 3 @ 2
< < x <
[ (&) () [
- - - —
(5 o (] o
El g = El
5] (&) (5] [
2 2 2 2
< < < <
= = = ot
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o =} =} =}
— - - —
= = = o
= 5| 5] )
0 0 0 0
10° 107 107 10° 107 10° 107" 10° 107 107 107 10 10° 107 107" 10°
ag g a ag

Figure 1: Possible plots of error rate (vertical axis) versus o (horizontal axis)

(b) [2 pts] Which of the plots (a), (b), (c), or (d) in Fig. 1 is most likely to reflect the training set error rate of the
learned classifier as a function of o7

(b)—as o gets very small, the classifier becomes almost like a lookup table. In particular, we see that when x # 2z
and o ~ 0, then exp(—51z ||z — 2[|?) & exp(—oc0) = 0, while if z = z then K(z,2) = 1.
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(c) [2 pts] Which of the plots (a), (b), (c), or (d) in Fig. 1 is most likely to reflect the hold-out error rate as a
function of 07 Recall that “hold-out error-rate” is the error rate obtained by evaluating the classifier that was
learned on training data on held-out (unused) data.

(d)—as o gets small, the training and test/hold-out error decrease, but eventually for very small o, the classification
becomes like a lookup function. Thus we have an increase in hold-out error rate for small o
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Q7. [10 pts] Learning a Ranking for Twoogle Hiring

You were just hired by Twoogle. Twoogle is expanding rapidly, and you decide to use your machine learning skills to
assist them in their attempts to hire the best. To do so, you have the following available to you for each candidate
i in the pool of candidates Z: (i) Their GPA, (ii) Whether they took CS164 with Hilfinger and achieved an A, (iii)
Whether they took CS188 and achieved an A, (iv) Whether they have a job offer from GBook, (v) Whether they
have a job offer from FacedIn, (vi) The number of misspelled words on their resume. You decide to represent each
candidate i € T by a corresponding 6-dimensional feature vector f(z(*)). You believe that if you just knew the right
weight vector w € RS you could reliably predict the quality of a candidate i by computing w - f (x(i)). To determine
w your boss lets you sample pairs of candidates from the pool. For a pair of candidates (k,) you can have them face
off in a “twoogle-fight.” The result is score (k > [), which tells you that candidate k is at least score (k > [) better
than candidate [. Note that the score will be negative when [ is a better candidate than k. Assume you collected
scores for a set of pairs of candidates P.

(a) [8 pts] Describe how you could use a perceptron-like algorithm to learn the weight vector w. Make sure to
describe (i) Pseudo-code for the entire algorithm, (ii) In detail how the weight updates would be done.

For this solution, the notation (w,z) = w'x = w - x will be used. We assume that score (k = 1) = —score (I = k)

and that score (k > 1) # 0 for any pair (k,1) € P.

The idea here is to use a margin-based perceptron. In this case, given a pair of candidates k, [, we compute <w, f (,7:<k’>)>
and (w, f(z("))), and our goal is to have (w, f(z®)) > (w, f(z)) + score (k > ) if score (k = 1) > 0 (otherwise,
we want the opposite inequality, that is, (w, f(z()) > (w, f(z®))) — score (k = 1) = (w, f(z¥))) + score (I - k)).

So our perceptron-like algorithm is as follows: we repeat

1. Choose a random pair (k,1) € P (you can also sequentially run through P)
2. If score (k= 1) >0,

o If (w, f(m(k))> > (w, f(.T,(U)> + score (k > 1) do nothing

e Otherwise update w «+ w + f(z®) — f(z®)
3. Otherwise (if score (k = 1) < 0)

o If (w, f(z)) > (w, f(2®)) — score (k > 1) do nothing

e Otherwise update w < w 4 f(z()) — f(z(*))

(b) [2 pts] You notice that your perceptron-like algorithm is unable to reach zero errors on your training data. You
ask your boss if you could get access to more information about the candidates, but you are not getting it. Is
there anything else you could do to potentially improve performance on your training data?

Lots of answers are possible to this question; essentially anything that is reasonable is acceptable. Some exam-
ples: you could use higher-order features, use kernels (the second-order polynomial kernel K (a:<k>.,:L'(l)) = (1+
(f(z®), f(z®)))? uses all polynomials of the features up to degree 2, which allows taking “ands” of the features),
or more complicated perceptron algorithms in which you hold “tournaments,” comparing a candidate z(9) against a
set of other (less desirable) candidates and performing a perceptron update when z(® does not outscore all of them.
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