
CS 61A Structure and Interpretation of Computer Programs
Fall 2017 Final Solutions

INSTRUCTIONS

� You have 3 hours to
omplete the exam.

� The exam is
losed book,
losed notes,
losed
omputer,
losed
al
ulator, ex
ept three hand-written 8.5" × 11"

rib sheets of your own
reation and the o�
ial CS 61A midterm study guides.

� Mark your answers on the exam itself. We will not grade answers written on s
rat
h paper.

Last name

First name

Student ID number

CalCentral email (_�berkeley.edu)

TA

Name of the person to your left

Name of the person to your right

All the work on this exam is my own.

(please sign)

POLICIES & CLARIFICATIONS

� If you need to use the restroom, bring your phone and exam to the front of the room.

� Before asking a question, read the announ
ements on the s
reen/board. We will not answer your question

dire
tly. If we de
ide to respond, we'll add our response to the s
reen/board so everyone
an see the
lari�
ation.

� For �ll-in-the blank
oding problems, we will only grade work written in the provided blanks. You may only

write one Python statement per blank line, and it must be indented to the level that the blank is indented.

� Unless otherwise spe
i�ed, you are allowed to referen
e fun
tions de�ned in previous parts of the same question.

http://berkeley.edu

2

1. (10 points) Calling All Values

For ea
h of the expressions in the table below, write the output displayed by the intera
tive Python interpreter

when the expression is evaluated. The output may have multiple lines. The intera
tive interpreter displays the

repr string of the value of a su

essfully evaluated expression, unless it is None. Write �FUNC� to indi
ate a

fun
tional value.

The �rst two rows have been provided as an example.

Assume that you have started python3 and exe
uted all the
ode to the left of the table �rst.

fandv = lambda f, x: [f, f(x)℄

def pv(v):

print(v)

return v

dbl = lambda x: 2*x

Idbl = lambda: pv(lambda x: x) or pv(dbl)

def upto(n):

items = [℄

for i in range(n):

items.append(i)

yield items

def av(v):

v.append(-1)

return v

def r
(f, n):

def g(y): return [n, f(y)℄

return r
(g, n // 2) if n>2 else g(n)

def mx(x):

x += 3

Expression Intera
tive Output

[2, 3℄ [2, 3℄

print((2, 3)) (2, 3)

fandv(print, print)

FUNC

[FUNC, None℄

Idbl()(pv(17) and pv(1))

FUNC

17

1

1

[av(x) for x in upto(2)℄[0℄

[0, -1, 1, -1℄

r
(lambda x: x, 9)

[2, [4, [9, 2℄℄℄

z=4

mx(z)

print(z)

4

Name: 3

2. (10 points) Environmentally Friendly

Fill in the environment diagram that results from exe
uting the
ode below until the entire program is �nished,

an error o

urs, or all frames are �lled. You may not need to use all of the spa
es or frames.

A
omplete answer will:

� Add all missing names and parent annotations to frames.

� Add all missing values
reated or referen
ed during exe
ution.

� Show the return value for ea
h lo
al frame.

� Use box-and-pointer notation for list values. You do not need to write index numbers or the word �list�.

4

3. (8 points) Get the Point? Fill in the environment diagram that results from exe
uting ea
h blo
k of
ode

below until the entire program is �nished or an error o

urs. Use box-and-pointer notation for lists. You don't

need to write index numbers or the word list. Erase or
ross out any boxes or pointers that are not part of a

�nal diagram.

a. (3 pt)

t = [1,[2,[3℄℄,[4,5℄℄

t.append(t[:℄)

Global frame

t

0

list

1

1 2 3

0

list

2

1

0

list

3

0

list

1

1 2

0

list

4

1

5

b. (2 pt)

t = [1, 2, 3℄

t[1:3℄ = [t℄

t.extend(t)

Global frame

t

0

list

1

1 2

1

3

. (3 pt)

t = [[1,2℄,[3,4℄℄

t[0℄.append(t[1:2℄)

Global frame

t

0

list

1

0

list

1

1

2

2

0

list

3

1

4

0

list

Name: 5

4. (14 points) O! Pas
al

Pas
al's Triangle is perhaps familiar to you from the diagram below, whi
h shows the �rst �ve rows.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

Every square is the sum of the two squares above it (as illustrated by the arrows showing here the value 4

omes from), unless it doesn't have two squares above it, in whi
h
ase its value is 1.

(a) (4 pt) Given a linked list that represents a row in Pas
al's triangle, return a linked list that will represent

the row below it. See page 2 of the Midterm 2 study guide for the de�nition of the Link
lass. However, your

solution must not use L.__getitem__(k) (or L[k℄). You may not need all the lines.

from link import *

def pas
al_row(s):

"""

>>> a = Link.empty

>>> for _ in range(5):

... a = pas
al_row(a)

... print(a)

<1>

<1 1>

<1 2 1>

<1 3 3 1>

<1 4 6 4 1>

"""

if s is Link.empty:

return Link(1)

start = Link(1)

last,
urrent = start, s

while
urrent.rest is not Link.empty:

last.rest = Link(
urrent.first +
urrent.rest.first)

last,
urrent = last.rest,
urrent.rest

last.rest = Link(1)

return start

6

(b) (4 pt) Fill in the pro
edure below to
reate a full Pas
al Triangle of height k. Represent the entire triangle

as a linked list of the rows of the triangles, whi
h are also linked lists. Again, your solution must not use

L.__getitem__(k) method (or L[k℄).

from link import *

from pas
al1_soln import *

def make_pas
al_triangle(k):

"""

>>> make_pas
al_triangle(5)

<<1> <1 1> <1 2 1> <1 3 3 1> <1 4 6 4 1>>

"""

if k == 0:

return Link.empty

row = Link(1)

end = Link(row)

result = end

for _ in range(k-1):

row = pas
al_row(row)

end.rest = Link(row)

end = end.rest

return result

Name: 7

(
) (4 pt) Pas
al's Triangle
ontains many patterns within it. For instan
e,
onsider the diagonals. The �rst

diagonal (going down the left side) is just a series of 1s. The se
ond diagonal (
onsisting of the se
ond elements

of ea
h row) is the
ounting numbers. The third diagonal is the triangular numbers.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

Ones

Counting

Triangular

Fill in the pro
edure below to take in a Pas
al Triangle (represented by a linked list from part b) and return

a linked list
ontaining the indi
ated diagonal. As before, your solution must not use L.__getitem__(k)

(or L[k℄), and you may not need all the lines.

from pas
al2_soln import *

from link import *

def diagonal(tri, n):

"""

>>> triangle = make_pas
al_triangle(6)

>>> print(diagonal(triangle, 1))

<1 1 1 1 1 1>

>>> print(diagonal(triangle, 2))

<1 2 3 4 5>

>>> print(diagonal(triangle, 3))

<1 3 6 10>

"""

if tri is Link.empty:

return Link.empty

p, j = tri.first, 1

while j < n and p.rest != Link.empty:

p, j = p.rest, j + 1

if p.rest == Link.empty and j != n:

return diagonal(tri.rest, n)

return Link(p.first, diagonal(tri.rest, n))

(d) (2 pt) Cir
le the Θ expression that des
ribes the number of integers
ontained in the value of the expression

8

make_pas
al_triangle(n).

Θ(1) Θ(logn) Θ(n) Θ(n2) Θ(2n) None of these

Name: 9

5. (13 points) Level-Headed Trees A level-order traversal of a tree, T , traverses the root of T (level 0), then

the roots of all the bran
hes of T (level 1) left to right, then all the roots of the bran
hes of the nodes traversed

in level 1, (level 2) and so forth. Thus, a level-order traversal of the tree

1

2

5 6

3

7

4

8 9

visits nodes with labels 1, 2, 3, 4, 5, 6, 7, 8, 9 in that order.

(a) (9 pt) Fill in the following generator fun
tion to yield the labels of a given tree in level order. All trees are

of the
lass Tree, de�ned on page 2 of the Midterm 2 Study Guide. The strategy is to use a helper fun
tion

that yields nodes at one level, and then to
all this fun
tion with in
reasing levels until a level does not yield

any labels. You may not need all the lines.

def level_order(tree):

"""Generate all labels of tree in level order.

>>> list(level_order(Tree(1, [Tree(2, [Tree(3), Tree(4)℄), Tree(5)℄)))

[1, 2, 5, 3, 4℄

"""

def one_level(tree, k):

"""Generate the labels of tree at level k."""

if k == 0:

yield tree.label

else:

for
hild in tree.bran
hes:

yield from one_level(
hild, k-1)

level,
ount = 0, True

while
ount:

ount = 0

for label in one_level(tree, level):

ount += 1

yield label

level += 1

10

(b) (4 pt) Write a fun
tion that, given a Python list of values and a tree, returns whether the list
ontains the

labels of the tree in level order. Assume tree is an instan
e of the Tree
lass on your Midterm 2 Study Guide.

def same_level_order(tree, s):

"""Return True if and only if list s
ontains the labels of tree in level order.

>>> t = Tree(1, [Tree(2, [Tree(3), Tree(4)℄), Tree(5)℄)

>>> same_level_order(t, [1, 2, 5, 3, 4℄)

True

>>> same_level_order(t, [1, 2, 3, 4, 5℄)

False

>>> same_level_order(t, [1, 2, 5, 3, 4, 6℄)

False

>>> same_level_order(t, [1, 2, 5, 3℄)

False

"""

k = 0

for label in level_order(tree):

if k >= len(s) or s[k℄ != label:

return False

k += 1

return k == len(s)

Name: 11

6. (10 points) Simplify! Simplify! For this problem,
onsider a very small subset of S
heme
ontaining only

if expressions, (if pred then-part else-part), and atoms in
luding symbols, #t for true, and #f for false.

Su
h expressions
an be simpli�ed a

ording to the following transformation rules. Here, P, E1, and E2 are

S
heme expressions in the subset, and P', E1', and E2' are their simpli�ed versions.

� The expression (if P E1 E2) simpli�es to

� E1' if P' is #t.

� E2' if P' is #f.

� E1' if E1' equals E2'.

� Otherwise, an if expression with P', E1', and E2' as the predi
ate, then-part, and else-part.

� Any expression, E, simpli�es to #t if E is known to be true (see below); or to #f if it is known to be false.

� Finally, in the expression (if P E1 E2), P' is known to be true while simplifying E1 and is known to be

false while simplifying E2. Initially, only #t is known to be true and only #f is known to be false.

Fill in the blanks on the next page so that (simp E) returns the simpli�ed version of E a

ording to these

rules, and the helper fun
tion (simp-
ontext E known-t known-f) returns the simpli�
ation of E given that

known-t is a list of expressions known to be true, and known-f is a list of expressions known to be false.

For
onvenien
e, assume that (nth k L) is de�ned to return element k of list L (where 0 is the �rst), and that

(in? E L) is de�ned to return true if and only if E is equal? to a member of the list L.

s
m> (simp '(if a b
))

(if a b
)

s
m> (simp '(if a b b))

b

s
m> (simp '(if #t (if #f a b)
))

b

s
m> (simp '(if a (if a b
) (if a d e)))

(if a b e)

s
m> (simp '(if (if #t a b) (if a d e) f))

(if a d f)

s
m> (simp '(if (if a b b) (if b
 d) (if e f f)))

(if b
 f)

s
m> (simp '(if (if a b
) (if (if a b
) x y) (if (if a b
) y z)))

(if (if a b
) x z)

s
m> (simp '(if (if a b
) (if (if a (if a b b)
) d e) f))

(if (if a b
) d f)

12

(define (simp expr)

(simp-
ontext expr '(#t) '(#f)))

(define (simp-
ontext expr known-t known-f)

(define simp-expr (if (pair? expr) (simp-if (nth 1 expr) (nth 2 expr) (nth 3 expr) known-t known-f) expr))

(
ond ((in? simp-expr known-t) #t)

((in? simp-expr known-f) #f)

(else simp-expr)))

(define (simp-if pred then-part else-part known-t known-f)

(let ((simp-pred (simp-
ontext pred known-t known-f)))

(define simp-then

(simp-
ontext then-part (
ons simp-pred known-t) known-f))

(define simp-else

(simp-
ontext else-part known-t (
ons simp-pred known-f)))

(
ond ((equal? simp-pred #t) simp-then)

((equal? simp-pred #f) simp-else)

((equal? simp-then simp-else) simp-then)

(else (list 'if simp-pred simp-then simp-else)))))

Name: 13

7. (10 points) Friendship Consider the table friends, de�ned

CREATE TABLE friends AS

SELECT "Jerry" AS p1, "Neil" AS p2 UNION

SELECT "Neil" , "Jerry" UNION

SELECT "Neil" , "John" UNION

SELECT "John" , "Neil" UNION

SELECT "John" , "Paul" UNION

SELECT "Paul" , "John";

This parti
ular de�nition is intended as an example; your
ode should work for any de�nition of friends in

whi
h all pairs of friends appear in both orders and people are not friends of themselves.

(a) (3 pt) De�ne a table friends2
ontaining friends-of-friends (or friends

2
). For example, Jerry and Neil are

friends, Neil and John are friends, so Jerry and John are friends of friends. Be
areful! Jerry is not a se
ond

degree friend to himself. The
olumn names should be p1 and p2, as in friends.

Expe
ted output:

sqlite> SELECT * FROM friends2;

Jerry|John

John|Jerry

Neil|Paul

Paul|Neil

CREATE TABLE friends2 AS

SELECT a.p1, b.p2 FROM friends AS a, friends AS b

WHERE a.p2 = b.p1 AND a.p1 <> b.p2;

14

(b) (7 pt) We
ould go on to de�ne a table of friends

3
(su
h as Jerry|Paul and Paul|Jerry), but let's go further

and de�ne a table of friends

5

alled friends5 that
ontains pairs of friends of friends of friends of friends of

friends. We want pairs of people who are friends

5
but are not friends, friends

2
, friends

3
, or friends

4
. Our

small sample friends table has no su
h pairs, alas, but we
an always dream.

To tell that a pair of people are stri
tly friends

5
, we
an build a table
ontaining pairs of people plus a

�friendship distan
e� for all distan
es up to 5. Then we
an sele
t just those pairs that appear at distan
e 5

but never appear at a lesser distan
e.

CREATE TABLE friends5 AS

WITH distan
es(p1, p2, dist) AS (

SELECT p1, p2, 1 from friends UNION

SELECT d.p1, f.p2, dist+1

FROM distan
es AS d, friends AS f

WHERE d.p2 = f.p1 AND dist < 5

)

SELECT p1, p2 FROM distan
es

GROUP BY p1, p2 HAVING min(dist) = 5;

