CS 61A Midterm #2 -— March 10, 2004
Your namne

login: csbla-
Discussion section number
TA’s name

This exam is worth 40 points, or about 13% of your total course grade. The exam contains
sIx substantive questions. plus the following:

Question 0 (1 point): Fill out this f{ront page correctly and put your name and login
correctly at the top of each of the following pages.

This booklet contains cight numbered pages including the cover page. Put all answers on
these pages, please; don’t hand in stray picces of paper. This is an open book exan.

When writing procedures, don’t put in error checks. Assume that you will be
given arguments of the correct type.

Our expectation is that many of you will not complete one or two of these questions. If
vou find one question especially difficult, leave it for later; start with the ones you find
casier,

0 1

READ AND SIGN THIS: I

. . 2 -

I certify that my answers to this exaw arc all my own — s /7
work, and that I have not discussed the exam questions or 4

answers with anyone prior to taking this exan. - = /7
. . . . 4

If T am taking this exam carly, I certify that T shall not _ _ /T
discuss the exam questions or answers with anyone until .

after the scheduled exan time. e A

6 . /6

— | total 10

Question 1 (6 points):

What will Scheme print in response to the following expressions? If an expression produces
all CIror message, you may just write “error”; you don’t have to provide the exact text of
the inessage. Also, draw a box and pointer diagram for the value produced by
each expression.

(list (cons ’(0) ’(1)) (append ’(2) '(3)))

(cdadr *((a (b)) (c ((e) d) f) (g)))

(append ’(list 1 2) ’(3))

Your name login ¢s6la
Question 2 (7 points):

Write the function datum-filter which, given a predicate and a tree, returns a list of
all the datums in the tree that satisfy the predicate (in any order). We are using peneral
trees (Lees that oo have avy anser of children) as defined i lecture. We are not using
binary trees. The Tunction should retury the empty list for any tree in which no datums
satisfly the predicate. You may use helper procedures.

Lor example:

(datum-filter even? (5))
/N
(12) (19)
/N
/ l \
(4) (22) (27)

returns the list (12 4 22) iy any order.

(define (datum-filter pred tree)

Question 3 (7 points): Many people write cond expressions like this:

(cond ((= x 5) 100)
(else 200))

in\thﬂlthCH?&H)OHb’UWJCOHd(ﬂAHM$7thofwcond of which is an else clause. This can
be written as the more acsthetically pleasing

(if (= x 5) 100 200)

We want a‘proccdurc.simplify—cond,1lunﬁtakQSszaHd Scheme expression as its argu-
1nonl,;uullxqﬂaceszﬂltwvu«ﬂa1mo-wdth—else cond expressions by an cquivalent if CXPres-
S1011. lﬁnn'hl1nhulllun,cond(»qnstUHS(unl1n3nosmxh
> (simplify-cond ’(+ 3 (cond ((=x5)7)
(else (let ((y (x x)))
(cond ((= y 16) 2)

(else 3)))))))
(+ 3 (if (= x B)

-
(let ((y (* x x)))
(if (=y 16) 2 3))))

Here is an attempt to write simplify-cond, but it has two bugs. Your job is to find
and fix the bugs. (TheluﬂporInnccduuetwo—clauses-cond—exp?iS(anocU)
“wWillned viork Witk nessd o expressiens
(define (simplify-cond exp) il agd teturn sptibole 1 Al
(if (two—clauses—cond—exp? exp)
(list ’if (car (cadr exp)) (cadr (cadr exp)) (cadr (caddr exp)))
(map simplify-cond exp)))

(define (two—clauses—cond—exp? exp)
(and (pair? exp)
(eq? (car exp) ’cond)
(= (length exp) 3)
(eq? (car (caddr exp)) ’else)))

Your name login esGla
Question 4 (7 points):
Here is the constructor for a new ADT designed to store student information.

(define (mane-stndon+ name aga 1
(list name ’age age (list ’id id)))

(a) Define the selectors for this student data type:

(define (name student)) » ‘)

(define (age student)

(define (id student)

(b) Write get-student, which takes a list of students and aun ID as arguments, and returns
astudent who matches that ID. If no student in the list matches the 1D, the function returns
#f. You may not define any helpers other than the seloctors you wrote in part (a).

(define (get-student list-of-students student-id)

Question 5 (6 points): Here is the code for the dyadic version of the sentence procedure
using conventional style:

(define (sentence argl arg?2)
(cond ((and (word? argl) (word? arg2))

(list argl arg2))

((and (word? argl) (sentence? arg2))
(cons argl arg2))

((and (sentence? argl) (word? arg2))
(append argl (list arg2)))

(else (append argl arg2))))

We're going to re-design this procedure using data dirceted programming. We'll see type
signatures such as (word word) or (sentence word) corresponding to the two arguments
to sentence

Rather than adding explicit type tags to words and sentences, we'll use the actual Scheme
types as implicit tags, by rewriting the selectors for tagged data. (This relies on the fact
that the explicit types we've used all end up as improper lists such as (rational 3 . 4),
so sentence? is false for them.)

(define (type-tag thing)
(cond ((sentence? thing) ’sentence)
((word? "thing) ’word)
(else (car thing))))

(define (contents thing)
(cond ((sentence? thing) thing)
((word? thing) thing)
(else (cdr thing))))

Your new version of sentence should hehave exactly like the one defined above. Here are
sone examples:

(sentence ’george ’harrison) => (george harrison)
(sentence ’angus ’(young)) => (angus young)
(sentence ’(eric) ’(clapton)) => (eric clapton)

This question continues on the next page!

0

Your name ____login cs61a

! Question 5 continued:

(a) Make calls to put to prepare the table:

(b) Write the new sentence procedure in the Data Directed Programming style

- You may
us¢ apply-generic from the book if vou find it useful

-~

Question 6 (6 points):

Here is the eval-1 code for scheme-1 (boﬂnxzuny’changCS)mnj1nadcixlhﬂ)(n'h01ncwork}

(define (eval-1 exp)
(cond ((constant? exp) exp)

((symbol? exp) (eval exp)) ; use tnderlyiag Cihewc s EVAT
((quote-exp? exp) (cadr exp))
((if-exp? exp)
(if (eval-1 (cadr exp))
(eval-1 (caddr exp))
(eval-1 (cadddr exp))))
((lambda-exp? exp) exp)
((pair? exp) (apply-1 (eval-1 (car exp)) ; eval the operator
(map eval-1 (cdr exp))))
(else (error "bad expr: " exp))))

Suppose we moved the cond clause beginning with pair? (the one that handles function
calls) to the beginning of the cond, making it the first clanse:

(cond ((pair? exp) ...)
((constant? exp) ...)
((symbol? exp) ...)

&éise (erfor o))

With the above changes, show whatscheme—l\Wﬂdd}ﬂh&gﬁVﬂlthoﬂﬂknﬂnginpum:lf
the result is an STk error. just write "ISRRORY:

3 =>
+ =>
(if #t 1 2) =>

((Qlambda (x) (* x x)) 3) =>

(+ 3 4)

(lambda (x) (* x x)) =>

