
Question 1 (5 points):

What will Scheme print in response to the following expressions? If an expression produces an error

message, you may just write “error”; you don’t have to provide the exact text of the message. If the value

of an expression is a procedure, just write “procedure”; you don’t have to show the form in which Scheme

prints procedures.

(every (lambda (x) (/ x 2))

 (keep even?

 (every (lambda (x) (* x x))

 ’ (2 3 4 5))))

(map (lambda (x) (se x x)) ’ (a b c))

(every (lambda (x) (se x x)) ’ (a b c))

(map (lambda (x)

 (let ((x (+ x 1))

 (y x))

 (* x y)))

 ’ (2 5))

(cddadr ’ ((a b c d e) (f g h I j) (k l m n o))

Question 2 (4 points):

What will scheme print in response to the following expressions? If an expression produces an error

message, you may just write “error”; you don’t have to provide the exact text of the message. Also, draw

a box and pointer diagram for the value produced by each expression.

(l is t (l i s t 2 (cons 3 5)))

(append ’ (5 6 (cons 1 ’ (2 3)))

Question 3 (3 points):

(def ine (tr ick x y) (* y y))

What is the result of (tr i ck (/ 1 0) 5)

a. In normal order

b. In applicative order

(def ine (inc x) (+ x 1))

c. True or False: In evaluating (inc (inc (+ 3 2))) , + gets called more in normal than in applicative order

________True _______False

Question 4 (4 points):

(a) what is the order of growth in time of foo below, in terms of n, its argument? (Hint: if n is odd, so is n

- 2.) also, does foo generate an iterative or a recursive process?

(def ine (foo n)

 (cond ((= n 1) 1)

 ((even? N) (foo (+ n 1)))

 (e l se (foo (- n 2)))))

_______Θ 𝑛 _______ Θ(𝑛2) ________Θ(2n) ______Not enough information to know

_______Iterative ______Recursive

(b) What is the order of growth in time of count-to below? Note: using se with a sentence as its first

argument and a word as its second argument takes time proportional to the length of the sentence.

(def ine (count -to N)

 (i f (= N 1) ‘ (1)

 (se (count -to (-N 1)) N)))

_______Θ 𝑛 _______ Θ(𝑛2) ________Θ(2n) ______Not enough information to know

_______Iterative ______Recursive

Question 5 (8 points):

For this question (both parts), use only higher order procedures, not recursion, even in helper

procedures!

(a) Define a procedure i s-p ig - lat in? That takes a sentence as its argument, and determines whether or not

it is a pig-latin sentence. IN other words, if every word in the sentence ends with ay , the procedure returns

#t , and otherwise it returns #f .

(b) Define a procedure lat in -change that given a sentence as argument, changes all words that end in ay

to end in ey .

Question 6 (8 points):

Write a procedure range that takes three arguments, a sentence sent and two words from and to . It

looks for a range of words within sent that start with from and end with to :

> (range ’ (being for the benefit o f mister k i te) ’ for ’o f)

(for the benef it o f)

If the from and to words occur more than once, just return the first range found:

> (range ’ (party o f the f i rst part sel l s party o f the second part th is car)

 ’party ’part)

(party o f the f i r st part)

The return value is a sentence that starts with the from word and ends with the to word.

The from and to words may appear any number of times in the sentence, but you should just use the first

occurrence of the from word, and the first occurrence of the to word that comes after the from word.

You may not assume that the to word will appear after the from word does:

> (range ’ (come to my party) ’party ’part)

()

Hint: It’s okay for you to examine each word in the sentence more than once. Write helper procedures.

Question 7 (7 points):

This question is about the iterat ive - improve procedure from exercise 1.46, page 78:

(def ine (i terat ive - improve good -enough? Improve)

 (def ine (help x)

 (i f (good -enough? x)

 x

 (help (improve x))))

 help)

(a) Fill in the blanks in the following definition of piglatin:

(def ine (p igla t in wd)

 (word ((i terat ive - improve

 __

 ___)

 wd)

 ‘ay))

(b) Another candidate for rewriting in terms of i terat ive - improve would be the repeated function from

exercise 1.43, page 77. But in fact this doesn’t work, because the “good enough” condition depends not

on the current argument value, but on the number of times the function has been called. Write a function

count - iterat ive - improve that’s like i terat ive- improve except that each of its two argument functions

takes two arguments: the current guess, and the number of times the improve function has been called so

far. Here’s how it will be used:

(def ine (repeated fn num)

 (count - i terat ive - improve (lambda (x cnt) (= cnt num))

 (lambda x cnt) (fn x))))

