CS 61A, Midterm #2, Spring 1999

CS 61A, Spring 1999
Midterm #2
Professor Brian Harvey

Question 1 (4 points):

What will Scheme print in response to the following expressions? If an expression produces an error
message, you may just say "error"; you don't have to provide the exact text of the message. If the value of an
expression is a procedure, just say "procedure”; you don't have to show the form in which Scheme prints
procedures. Also, draw a box and pointer diagram of the value produced by each expression.

(cons'(ab) '((cd)))

(cdadr'((123)(456)(789)))

(cons (list '(a) '(b)) (list 'c 'd))

(cons '(ab) 'c)

Question 2 (5 points):

A three-tree is a tree-like structure in which each node contains two values, called the left-datum and the
right-datum, and up to three children, called the left-branch, the middle-branch, and the right-branch.
(Any of these can be an empty list instead of a three-tree.)

(a) Write the constructor (make-3 Ift-dat rt-dat 1ft-br mid-br rt-br) and the appropriate selectors so that a
three-tree node looks like this:

CS 61A, Spring 1999 Midterm #2 Professor Brian Harvey

CS 61A, Midterm #2, Spring 1999

I I I I I I I I I I | /]
-=> - - e

I_I_I___I I_I_I___I I_I_I___I I_I_I/__I

\|/ left middle right

N branch branch branch

I I I

| | | --|-->right

| | | | datum

I

left

datum

(b) An LR-three-tree is a three-tree in which the data are numbers, the left-datum is less than the right-datum,
and all of the (nonempty) children are LR-three-trees.

Write the predicate LR-three-tree? that takes as its argument and returns true if and only if it's an
LR-three-tree.

Respect the data abstraction.

Question 2 (5 points):

CS 61A, Midterm #2, Spring 1999

Question 3 (5 points):

Ben Bitdiddle, who used to program in C++, is upset that to select the element at a particular position in a
sequence, a Scheme programmer has to type (list-ref seq 5), whereas a C++ programmer using an array to
represent the sequence has merely to type seq[5].

Alyssa offers to help him out by creating an array abstract type, implemented using message passing. It'll
work like this:

> (define al (make-array '(lucy in the sky with diamonds)))
> (al 3)

SKY

> (al 'length)

6

> (al 'with)

4

> (al 'friends)

#F

If given the word length as a message, an array will return the number of elements it has. If given a number
as a message, it will return the element at that position, counting from zero. If given any other message, if the
message is an element of the array, it returns the position at which the element is found; otherwise it returns

false.

Write make-array.

Question 3 (5 points): 3

	 CS 61A, Midterm #2, Spring 1999

