
University of California, Berkeley – College of Engineering
Department of Electrical Engineering and Computer Sciences

Fall 2005 Instructor: Dan Garcia 2005-12-17

 CS61C Final Exam 
Last Name
First Name

Student ID Number
Login cs61c-

Login First Letter (please circle) a b c d e f g h i j k l m

Login Second Letter (please circle) a b c d e f g h i j k l m

n o p q r s t u v w x y z

The name of your LAB TA (please circle) Jeremy Michael Navtej Zhangxi
Name of the person to your Left

Name of the person to your Right
All the work is my own. I have no prior knowledge of the exam

contents nor will I share the contents with others in CS61C
who have not taken it yet. (please sign)

Instructions (Read Me!)
• This booklet contains 9 numbered pages including the cover page. Put all answers on these pages (feel

free to use the back of any page for scratch work); don’t hand in any stray pieces of paper.
• Please turn off all pagers, cell phones & beepers. Remove all hats & headphones. Place your

backpacks, laptops and jackets at the front. Sit in every other seat. Nothing may be placed in the “no fly
zone” spare seat/desk between students.

• Fill in the front of this page and put your name & login on every sheet of paper.
• You have 180 minutes to complete this exam. The exam is closed book, no computers, PDAs or

calculators. You may use two pages (US Letter, front and back) of notes, plus the green reference
sheet from COD 3/e.

• There may be partial credit for incomplete answers; write as much of the solution as you can. We will
deduct points if your solution is far more complicated than necessary. When we provide a blank, please
fit your answer within the space provided. “IEC format” refers to the mebi, tebi, etc prefixes. You have 3
hours...relax.

• You must complete ALL THE QUESTIONS, regardless of your score on the midterm.
Clobbering only works from the Final to the Midterm, not vice versa.

Problem M1 M2 M3 Ms F1 F2 F3 F4 F5 Fs Total
Minutes 20 20 20 60 24 24 24 24 24 120 180
Points 10 10 10 30 18 18 18 18 18 90 120

Score

Name: _______________________________ Login: cs61c-____

 2/9

Midterm Revisited

M1) “Doctor, our patient is encoding!” (10 pts, 20 min)

a) A Binary Coded Decimal (BCD) uses a dedicated nibble for each decimal digit, so a byte could

represent all the numbers from 00-99. We will use our standard MIPS 32-bit word to encode a
BCD. What is the ratio (to one significant figure, in decimal) of overall bit patterns to the ones
that encode a valid BCD? (E.g., With a single decimal digit, it’d be 16/10 ≈ 2.) Show your work.
Your answer should not be an expression, it should be a decimal number rounded to 1
significant figure.

b) Suppose we have a very small 4 pixel × 8 pixel grayscale video display where each pixel can

independently be set to one of 4 shades of gray. How many unique images can possibly be
displayed? Leave your answer in IEC form (e.g., 64 kibi images, 8 mebi images, etc).

c) If we were to try to compare two floats using our MIPS signed integer compare slt,

when would we get an incorrect answer (i.e., describe in English the set of all possible inputs
that generate incorrect answers)? Assume neither encodes a NaN or ±0.

__

d) Put the corresponding letters for each 32-bit value in order from least to greatest. Hint: the

question isn’t asking you to write down what each one is, it only asks for the relative order!

A. 0xF0000000 (IEEE float)
B. 0xF0000000 (2's complement)
C. 0xF0000000 (sign-magnitude)
D. 0xFFFFFFFF (2's complement)
E. 0xFFFFFFFF (1's complement)
F. 0xF1000000 (IEEE float)
G. 0x70000000 (IEEE float)
H. 0x7FFFFFFF (2's complement)
I. 0x80000010 (IEEE float)

Least___Greatest

Name: _______________________________ Login: cs61c-____

 3/9

M2) “A man, a plan, a canal…Panama” (10 pts, 20 min)
A slicing plan is a decomposition of a rectangle with
horizontal and vertical sides using horizontal and vertical
cuts. This type of decomposition can be represented as a
binary tree, whose internal nodes are the cuts (horizontal or
vertical), and whose external leaf nodes are the rectangles.
The diagram to the right shows an example of how we
would divide the space with five cuts into six rectangles, A-F.

#define CUT 0
#define RECTANGLE 1

typedef struct node {
 int type; /* CUT or RECTANGLE */
 char label[16]; /* If a RECTANGLE, the name. If a CUT, “HORIZONTAL” or “VERTICAL”. */
 struct node *L; /* If type is a RECTANGLE, these may be any value! */
 struct node *R; /* If type is a RECTANGLE, these may be any value! */
} slicenode_t;

1 slicenode_t masterPlan;
2 int main(int argc, char *argv[]) {
3 slicenode_t plans[2], *ptrs[2];
4 ptrs[1] = (slicenode_t *) malloc (sizeof(slicenode_t) * 10);
5 …

a) How many bytes would be used in the

static, stack and heap areas as the result
of each of these lines. Treat each line
independently! E.g., For line 3, don’t
count the space allocated in line 1.

b) Finally, assuming the entire plan is stored on the heap, finish the Delete function to delete the full

plan. It should return the number of slicenodes it freed (e.g., Given the plan above, it’d return 11).
When deleting, assume that the OS immediately fills any freed space with garbage, so you cannot
access freed heap contents. You may assume Delete won’t be called from the outside with NULL.
You will lose points if your code is overly complicated. Our longest solution has only 7 semicolons.

int Delete (slicenode_t *plan) {

 if() {

 } else {

 } /* Remember, Delete should RETURN THE NUMBER OF SLICENODES IT FREED */
}

 static stack heap

Line 1

Line 3

Line 4

Name: _______________________________ Login: cs61c-____

 4/9

M3) “Fenry Hord invented the disassembly line…” (10 pts, 20 min)
a) Given the MIPS code below, write the equivalent C function below in the structure we’ve

provided. Feel free to add comments to help your disassembly. To aid readability, you must
use the variable names from our comments below in your C solution where appropriate.

foo:
addiu $sp, $sp, -12
sw $a0, 0($sp) # src
sw $a1, 4($sp) # size
sw $ra, 8($sp)
move $a0, $a1 #
addiu $a0, $a0, 1 #
jal malloc #
move $t0, $v0 # dest
lw $t1, 0($sp) # src
lw $t2, 4($sp)
addu $t2, $t2, $t1 # end

foo_loop:
beq $t2, $t1, foo_end #
lbu $t4, 0($t1) #
ori $t4, $t4, 0x20 #
sb $t4, 0($t0) #
addiu $t0, $t0, 1 #
addiu $t1, $t1, 1 #
j foo_loop

foo_end:
sb $0, 0($t1) #
lw $ra, 8($sp) #
addiu $sp, $sp, 12
jr $ra

b) If src contained letters, what is a more appropriate name for the subroutine foo?
(i.e., what would “jal foo” do, from the point of view of the caller?)
Hint: you might find the green sheet handy here.

c) What if we called foo from printf as so: printf("…format string…", foo(source, size)).

Why is this bad form? Hint: think about what would happen if this were done many times.

d) Let’s say we removed the “sb $0, 0($t1)” instruction and then made the same call to foo

from printf as in question (c) above: What are all the things that could happen?

________ foo (________ src, ________ size) {

 for(___________; ____________; ____________) {

 }

}

Name: _______________________________ Login: cs61c-____

 5/9

Post-Midterm Questions

F1) “Where’s the sofr (sophomore, freshman) instr?” (18 pts, 24 min)
On the right is the single-cycle
MIPS datapath presented
during lecture. Your job is to
modify the diagram to
accommodate a new MIPS
instruction. Your modification
may use simple adders,
shifters, mux chips, wires, and
new control signals. If
necessary, you may replace
original labels.
Function calls in MIPS typically
end with stack restoration and
jr $ra as shown below.
Because this happens often, we want to do this in one instruction instead of two. We’ll design a new
I-type instruction, srjr (stack restore, jump register), as follows:

addi $sp, $sp, 16
jr $ra  srjr $ra $sp 16

a) What is the RTL for srjr that will allow it to have the widest range of stack restoration?
Hint: stack restoration always occurs in non-negative word units… The jr is done already.

 ; PC = R[rs]

b) What is the most $sp could change as a result of a srjr call (in Bytes)? Use IEC format.

 Bytes (plus or minus a byte).
c) Modify the picture above and list your changes below. You may not need all the boxes.

Please write them in “pipeline stage order” (i.e., changes affecting IF first, MEM next, etc)

(i)
(ii)
(iii)
(iv)
(v)
(vi)

d) We now want to set all the control lines appropriately. List what each signal should be

(an intuitive name or {0, 1, x = don't care}). Include any new control signals you added.

RegDst RegWr nPC_sel ExtOp ALUSrc ALUctr MemWr MemtoReg

Rs Rt

Name: _______________________________ Login: cs61c-____

 6/9

F2) “Cache, money. Dollar bills, y’all.” (18 pts, 24 min)
Given the following code for a MIPS machine with 8 byte blocks, an empty 128-entry fully-associative
LRU L1 cache, 4 MiB ARRAY_SIZE, and char A[] starting at a block boundary (byte 0 of a block):

for (i = 0 ; i < (ARRAY_SIZE/STRETCH) ; i++) { /* # of STRETCHes */
 for (j = 0 ; j < STRETCH ; j++) sum += A[i*STRETCH + j]; /* for each STRETCH */
 for (j = 0 ; j < STRETCH ; j++) product *= A[i*STRETCH + j]; /* for each STRETCH */
}

a) What is the T:I:O bit breakup (assuming byte addressing)? ______:______:______

b) Cache size (data only, not tag and extra bits) in bytes? (Use IEC) ____________________

c) What is the largest STRETCH that minimizes cache misses? (Use IEC) ___________________

d) Given the STRETCH size from (c), what is the # of cache misses? (Use IEC) __________________

e) Given the STRETCH size from (c), if A does not start at a block boundary,

roughly what is the ratio of the # of cache misses for this case
to the number you calculated in question (d) above. (e.g., 8x, 1/16th) ____________________

f) Can a 32-bit MIPS machine make use of more than 4 GiB of physical memory?

Why or why not?

g) Would the performance of such a machine be any better than one with 4 GiB of physical

memory? Why or why not?

h) In our familiar single-cycle CPU with interrupts turned off, 4 KiB pages and no other users

logged in or other programs running (other than the OS, which is not doing anything interesting
at present), we are executing lines of MIPS code and we come to two instructions:

and $t1, $t2, $t3
or $t1, $t2, $t3

and we notice that the and completes in 1 cycle, but the or completes in 1,000,000 cycles.
You realize you can now infer something about the value of the PC when the and was
running...what is it? Be as explicit as possible.

Name: _______________________________ Login: cs61c-____

 7/9

F3) “Folks in Alaska are experts in Pipelining…” (18 pts, 24 min)
Consider a processor with the following specification:

o Standard five (5) stage (F, D, E, M, W) pipeline.
o No forwarding.
o Stalls on ALL hazards.
o Non-delayed branches
o Branch comparison occurs during the second stage.
o Instructions are not fetched until branch comparison is done.
o Memory CAN be read/written on same clock cycle.
o The same register CAN be read & written on the same clock cycle (structural hazard).
o No out-of-order execution.

a) Count how many cycles will be needed to execute the code below and write out each

instruction’s progress through the pipeline by filling in the table below with pipeline stages
(F, D, E, M, W).

[1] add $a0, $a0, $t1
[2] lw $a1, 0($a0)
[3] add $a1, $a1, $t1
[4] sw $a1, 0($t1)
[5] add $t1, $t1, -1
[6] bne $0, $0, end
[7] add $t9, $t9, 1

Cycle  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Inst 1 F

Inst 2

Inst 3

Inst 4

Inst 5

Inst 6

Inst 7

b) Considering the following two changes, fill in the table again:

o Our processor now forwards values
o Delayed branches

Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Inst 1 F

Inst 2

Inst 3

Inst 4

Inst 5

Inst 6

Inst 7

Name: _______________________________ Login: cs61c-____

 8/9

F4) Synchronous Digital Circus (18 pts, 24 min)
We are designing a circuit with a 1-bit input (I(t)) and a 2-bit output (O(t)), that will produce, at time
t, the number of zeros in the set {I(t-2), I(t-1), I(t)}. As an example,
the input: I: 1 1 0 0 1 0 0 1 1 0 1 1 1 0 0 0
…will produce the output: O: 0 0 1 2 2 2 2 2 1 1 1 1 0 1 2 3

a) Complete the FSM diagram below. Our states have been labeled Sxy
indicating that the previous 2 bits,{I(t-2), I(t-1)} would be {x, y}.
Fill in the truth table on the right. The previous state is encoded in
(P1,P0), the next state is encoded in (N1,N0), and the output is encoded
as (O1,O0). Make sure to indicate the value of the output on your state
transitions.

b) Provide fully reduced (i.e., fewest gates to implement…you can use any n-input gates)
Boolean expressions for the Output (O1,O0) and Next State (N1,N0) bits. If there is a name for
any of the circuits, write it on the left. E.g., “The always-1”, “3-input NAND”, etc. A 2-input XOR
has the symbol of “⊕”.

Scratch space

_________________ O1 =

_________________ O0 =

_________________ N1 =

_________________ N0 =

c) Draw the overall circuit using the fewest gates possible with and without feedback below.

You may add registers. “Feedback” means outputs are somehow fed back into inputs.
Assume we’ve correctly implemented the answer to (b) as a black box in the middle.

P1 P0 I O1 O0 N1 N0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

I O1

O0

With feedback

I

Without feedback

O1

O0 N1

O0

O1

N0 P0

P1

I

N1

O0

O1

N0 P0

P1

I

S00 S01

S10 S11

Name: _______________________________ Login: cs61c-____

 9/9

F5) The “Martha Stewart Potpourri” Question… (18 pts, 24 min)
a) In lecture, we saw examples of “learning from failure” where we were shown history’s top ten

worst software bugs as chosen by Wired Magazine (e.g., the Therac-25 incident). Aside from
Therac, what is another one of them and what is a lesson we should draw after seeing all ten?

__

b) Prof. Patterson said that in the 20th century, computer engineers optimized for performance

and cost. Aside from availability, what does he suggest we optimize for in the 21st century?

__

“Much Ado About Not-ing”:
Consider the circuit on the right
with the following specifications:
tinverter, tor, tclk-to-q, tsetup, thold, tclock
(assume no delay on the wires):

c) If all other times are fixed,

what is the valid range for tinverter?
Express it in terms of the
variables listed above. ___________________ ≤ tinverter ≤ _____________________

Given the following instruction mix:

and CPIi for each instruction i:

d) Given that machine A has a clock

speed of 2 GHz and B has a clock
speed of 4 GHz, how fast do
branches for machine B need to be to achieve the same execution
performance for this particular program? Write it in the box above.

e) (This question has nothing to do with MIPS) Assume we have

enough bits to byte-address 1610 exbibytes. We want to define
some number of the most-significant bits to encode 1210 x 210
things, and some number of the least-significant bits to encode
200,000,00010 things. How many things can we encode with the
remaining bits? Use IEC format, like “16 kibithings”, or “128
mebithings”. Show your work on the right.

You need to design a 1 TebiByte disk, but you only have 4 platters,
an outer radius of sqrt(30/π) in and an inner radius of sqrt(22/π) in.

f) What’s the bit density you need (in B/in2 units)? Use IEC format. ____________________

If you used 32 identical 1-TebiByte disks to build a single virtual RAID volume, how much space (in
IEC format) would the user see if we used RAID level…

g) 0 _________________, 1 _________________, 3 _________________, 5 __________________

ALU Load/Store Branch
20% 30% 50%

Machine Clock speed ALU Load/Store Branch
A 2 GHz 2 2 2
B 4 GHz 1 1

RESET

CLK

OUT D Q

