
CS 61C, Fall, 2006, Midterm 1, Garcia

Problem 0 1 2 3 4 5 6 Total
Minutes 0 20 30 40 30 30 30 180
Points 1 11 12 15 12 12 12 75

Question 0:
Name:
Login:
SID:
Section TA:
Person to Left:
Person to Right:
Signature:

Question 1: Warm up jog and Stretch (11 pts, 20 min.)

a) How many different things can we represent with N bits?

b) Given the number 0x811F00FE, what is it interpreted as:

…a binary number?
…an octal (base 8) number?
…four unsigned bytes?
…four two’s complement bytes?
…a MIPS instruction?
 Use register names (e.g., $a0)

c) During which phase of the process from coding to execution do each of the following
things happen? Place the most appropriate letter to the answer next to each statement.
Some letters may never be used; others may be used more than once.

__ The stack allocation increases a) Never

__ jr $ra b) during loading

__ You give your variables names c) during garbage collection

__ Your code is automatically optimized d) while writing higher-level
 code
__ Jump statements are resolved e) during the compilation

__ Pseudo-instructions are replaced f) during assembly

__ a memory leak occurs g) during linking

__ a jal instruction is executed h) when malloc is called

__ Symbol and relocation tables are created i) when free is called

__ The “Buddy System” might be used j) when a function is called

__ Machine code is copied from disk into memory k) when a function returns

__ Storage in C-originated-code is garbage collected l) when registers are spilled

__ MAL is produced m) during mark and sweep

 n) When there are no more references
 to allocated memory

Question 2: Old-School Quarter Arcade (12 pts, 30 min)

Early processors had no hardware support for floating point numbers. Suppose you are a game
developer for the original 8-bit Nintendo Entertainment System (NES) and wish to represent
fractional numbers. You and your engineering team decide to create a variant on the IEEE
floating point numbers you call a quarter (for quarter precision floats). It has all the properties of
IEEE754 (including denorms, NaN and ±∞) just with different ranges, precision &
representations.

A quarter is a single byte split into the following fields (1 sign, 3 exponent, 4 mantissa):
SEEEMMMM the bias of the exponent is 3, and the implicit exponent for denorms is -2.

a) What is the largest number smaller than ∞?

b) What negative denorm is closest to 0? (but not -0)

You find it neat how rounding modes affect computation, if at all. You remember the NES
carries one extra guard bit for computation, so you write the following code to run on your NES.
What is the value of c, d, and e? Please express your answer in decimal, but fractions are ok.
E.g., -5 3/4 .

quarter q1, q2, q3, c, d, e;

q1 = -.25; /* -1/4 */
q2 = -4.0;
q3 = -0.125; /* -1/8 */

/* Default rounding mode */

c = q1 + (q2 + q3);

/* Default rounding mode */

d = (q1 + q2) + q3;

SetRoundingMode(TOWARDS_ZERO);
e = (q1 + q2) + q3;

c

d

e

Question 3: You must be kidding! (groan) (15 pts, 40 min)

We have a simple linked list that consists of kids’ names (a standard C string) and the grade they
are in – an integer between 0 (Kindergarten) and 12. The structure appears as follows, with an
example:

typdef struct kid_node {
 int grade;
 char *name;
 struct kid_node *next;
} kid_t;

For “administrative reasons”, we’d like to categorize our kids by grade.
We copy the kids’ information into an array of linked lists indexed by the grade.

Note that changing ANY of the data
In these structures here should NOT
Affect the original list above.

Fill in the blanks in the below code:

a) The create_kid_array function will return a pointer to the new array. Remember, the
range of grades is 0-12, inclusive, and the original list MUST remain unchanged.

#define MAXGRADE 12
kid_t **create_kid_array (kid_t *kid) {
 int i; /* in case you need an int */
 kid_t *temp; /* or kid_t ptr somewhere */
 kid_t **kid_array = (kid_t **) malloc (_______________________);
 if (kid_array == NULL) return NULL; /* malloc has no space! */
 /* Additional initializing – add some code below */

 ret
}

3 1 3

kid Kim Paula Juan

Index: 0 1 2 3 4 5 6 7 8 9 10 11 12

kid_array

1

Paula

3 3

Kim Juan

Index: 0 1 2 3 4 5 6 7 8 9 10 11 12

kid_array

1

Paula

3 3

Kim Juan

Question 3: You must be kidding! (groan) …continued… (15 pts, 40min)

Typedef struct kid_node {
 int grade;
 char *name;
 struct kid_node *next;
} kid_t;

b) For every Yin, there is a Yang. Now that we have a function for creating kid arrays, we
must create a function that frees all memory associated with the structure. Fill in the
following functions. free_kid_array calls the recursive function free_kid_list which
frees a single kid list.

void free_kid_array(kit_t *kid_array[]){
 int i;
 for (i = 0; i<= MAXGRADE; i++){
 free_kid_list(kid_array[i]);
 }
 /* Clean up if necessary */

}

void free_kid_list(kid_t *kid) {

 if (kid == NULL)
 return;

}

/* Declare temp variables */

Question 4: That’s sum grade you got there, kid! (12 pts, 30 min)

We wish to find out how many cumulative years of schooling our kids had. Conveniently we
can calculate that by simply summing all the grade fields from our new linked list of kids.
Translate the following recursive C code into recursive MAL-level MIPS.

Typedef struct kid_node {
 int grade;
 char *name;
 struct kid_node *next;
} kid_t;

We started you off; Fill in the blanks. You may not add lines; you may leave lines blank

grade_sum:
 beq _____, _____, NULL_CASE

 jal grade_sum

 lw $a0, 0($sp)

NULL_CASE:

int grade_sum (kid_t *kid) {
 If (kid == NULL)
 Return 0;
 else
 Return kid->grade + grade_sum(kid->next);
}

Question 5: A little MIPS to C action… (12 pts, 30 min)

You may find this definition handy: sllv (Shift Left Logical Variable): sllv rd, rt, rs
(the contents of the general register rt are shifted left by the number of bits specified by the low

order five bits contained as contents of general register rs, inserting zero into the low order bits

of rt. The result is place din register rd.) Compiles translate z = x<<y into sllv zReg,xReg,yReg

rube: li $t0, 0
loop: andi $t1, $a0, 1
 beq $t1, $zero, done
 srl $a0, $a0, 1
 addiu $t0, $t0, 1
 j loop
done: li $v0, 0
 li $t2, 32
 beq $t2, $t0, home
 ori $v0, $v0, $t0
 sllv $v0, $v0, $t0
home: jr $ra

a) In the box, fill in the C code for rube.

b) Rube can be rewritten as two TAL instructions!
We’ve provided the second: what’s the first?

c) How would rube change if we swapped the srl with sra? Examples might be:

• Rube doesn’t change

• Rube now crashes on all input

• Rube is the same, except rube(5) now overflows the stack

• Rube now returns -3 always

• Etc …

rube:

 jr $ra

int rube (unsigned int x) {
 int i = 0; /* i is $t0 */

}

Question 6: Memory, all-ocate in the moonlight… (12 pts, 30 min.)

a) Fill in the following table according to the given memory allocation scheme. Show the
changes that are made to the memory, if any. Request for memory are in the left column.
If a request can’t be satisfied, the memory and internal state (e.g., where next-fit will start)
shouldn’t change. Likewise, if there is no prior allocation made for a given free call,
ignore the action for the given scheme. Assume that if best-fit has multiple choices, it
will take the first valid one starting from the left. The first rows are filled as an example.

Memory Action First-Fit Next-Fit Best-Fit

A = malloc(1) A A A

B = malloc(2) A B B A B B A B B

free(A) B B B B B B

C = malloc(1)

D = malloc(1)

E = malloc(2)

Free(B)

Free(C)

Free(E)

F = malloc(2)

G = malloc(2)

b) Let’s compare the performance of a Slab Allocator and Buddy System for 128 bytes of

memory (it will be fun!). The Slab Allocator has 2 32-byte blocks, 7 8-byte blocks, and 4
2-byte blocks. All requests to memory are at least 1 byte, and are no more than 64 bytes.
For ideal requests (of your choosing), find the limits:

What is the maximum number of requests Slab can satisfy successfully? _________

What is the maximum number of requests Slab can satisfy before failure? _________

What is the maximum number of requests Buddy can satisfy successfully? _________

What is the maximum number of requests Buddy can satisfy before failure? _________

c) My code segment is SOOO big. (audience: How big is it?) It’s SOOO big that if I added
one more instruction, I would be able to jal to it. (currently I can jal to anywhere in my
program). How big is my code segment? Use IEC language, like 16 KibiBytes, 128
YobiBytes, etc.

