UC Berkeley : CS61C (Garcia & Lustig) : Midterm part 1 : 2014-10-10

cs6lc-
Name (first last) SID Login

€ Name of person on left (or aisle) Name of person on right (or aisle) =

Question 1: Running in circles (25 min, 18 pts)

A nibble is half of a byte (4 bits). You'd like to implement Loadnibble in MAL MIPS, a function that
takes one uint32_t argument ~ and returns the x" nibble of memory in the lowest 4 bits of the return
register (the other 28 bits should be 0). Note: The x" nibble immediately follows the n-1" nibble
without overlapping; see box . The MIPS instruction sr1v (“shift right variable”) might be useful here; it
operates like the shamt-based right-shift, except that its 3™ register argument is the variable amount
to shift by.

1/2
a) What fraction of all the nibbles of memory can you access?
b) Implement Loadnibble by filling in the blanks:
srl $ao0 1
LoadNibble: $t0 # figure out which byte contains that nibble
1bu $t0
sal 0 y memory
andi $20 0x1 for N=2, LoadNibble |§ 0x000010010 0100
$a0 = nibble 1 nibble 0
sll $a0 $a0 2 # we needed this! returns 0b1000 g 0x0001 [0110 1000 |
srlv $v0 Sal $a0 © S ————
gonel: for N=5, LoadNibble ,,‘1;" nibble 3 nibble 2
di 0 0 o
gonezs b VO swo 0w returns 0b1001 4 0x0002[1001_0000]
. nibble 5 nibble 4

jr $ra

c) We want to rewrite LoadNibble t0 make use of a helper function melper that will take two
arguments. The first is an index i from 0-1 and the second is a byte B. Helper returns the ith
nibble in B placed in the lowest 4 bits of the return value (the rest 0s).

E.g., Helper(0, 0b01100100) 2 0b0100 and Helper(l, 0b01100100) = 0b0110

We decide we don’t need the two MIPS instructions labeled “gone1” and “gone2”. What would you
replace these instructions (and the s11) with to call Helper and implement LoadNibble successfully?
Write the replacement below. Follow calling conventions and complete it in the fewest lines

possible.
addiu $sp $sp -4
this line may not be necessary

sw $ra 0(S$sp)
this line may not be necessary

this line may not be necessary

jal
Helper # j works too, all other lines blank (since $ra = LoadNibble’s caller)!
lw S$ra 0(S$sp)

this line may not be necessary

addiu $sp $sp 4
this line may not be necessary

this line may not be necessary

Question 2: I can C clearly now, the rain is gone... (25 min, 18 pts)

A) Fill in the blank to complete this function that parses a string of octal digits (base 8) into a uint64_t. For example,
calling parse_octal ("71") should return the number 57. Do not use the comma operator, nested assignment,
prefix/postfix operators, or function calls. You may assume that the given number “fits” into a uint64_t . (Hint: The
backside of the MIPS green sheet may help.)

uint64_t parse_octal(char *s) {
uint64_t r = 0;

while(*s){ r*8 + (*s - '0'")
r = ;
s++;
}
return r;
}
B) We have the following data packed tightly (no padding) into the struct data, and some more code below:
Struc*'i‘{ltm t a; Fill in the bllanks with an equ.ivalent. expre§sion using
char ;[2+(UNKNOWN LENGTH*4)] ; only the pointer s, pointer arithmetic, casting, and the
int32 t c; - function strlen(). You may NOT use
int32:t d; UNKNOWN_LENGTH. Assume sizeof (char) = 1.
} data;
/* .. Some code here that fills in data.b with the longest string possible .. */
char *s = data.b; /* s is a char, so it counts by 1 byte by default if in parens */
s-1 /* or (s-2) */
((intl6_t ¥)) = -1; // data.a = -1;
(ststrlen(s)+1+4)
((int32_t ¥)) = -1; // data.d = -1;
C) Here we have a LR-tree, defined as a node with two arrays struct lr treef{
of child pointers: two left children and two right children. char *name;
Each node also contains a pointer to its parent node, a uint64_t ID;
unique integer ID value, and a string name field. Root nodes struct lr_tree *left children[2];
will have a NULL parent pointer, and leaf nodes will have struct lr_tree *right_children[2];
arrays of NULL children pointers. struct lr tree *parent;
Fill in the blanks to complete this function that frees a LR- b

tree if called with the root of the tree. You must free ALL

data associated with this LR-tree! You might not need all of the blanks, in which case use the most minimal number of
blanks possible. Do not use the comma operator, nested assignment, or prefix/postfix operators.

void free lr tree (struct lr tree *p) {
p != NULL
if () {
for(size_t x = 0; x < 2; x++) {
free_lr tree(p->left_children[x]);

free_lr_ tree(p->right_children([x]);

}

free (p->name) ;

free(p);

