
1

&6��F�0LGWHUP��������������62/87,216

Your family name ______________________ Your given name______________
Your Student ID number _______________ login: cs61c_______

Please circle the last two letters of your login name.

b c d e f g h i j k l m n a o p q r s t u v w x y z
b c d e f g h i j k l m n a o p q r s t u v w x y z

The reason we asked this was so we would have some recourse if we could not read your
handwriting. A surprising number of people left this out, including people whose login
was unclear to us, confusing g and q, u and v, l and e, a and o.

Discussion section meeting time___________ TA’s name _________________

Look at the edge of your seat. Write your row and number. Your row number may not be visible
from where you sit, so we will help you later. Row_________ Seat _______

This booklet contains 6 numbered pages including the cover page, plus 3 pages of excerpts from
appendix B and C of Goodman and Miller. Put all answers on these pages, please; don’t hand in
stray pieces of paper. The exam contains 7 substantive questions, plus question 0 and the box
immediately below.

I certify that my answers to this exam are all my own work, and that I have not
discussed the exam questions or answers with anyone prior to taking this exam. If I
am taking this exam early, I certify that I shall not discuss the exam questions or
answers with anyone until after the scheduled exam time.

 Signature _____________________

Question Max Points Your Points

0 1

1 17

2 5

3 6

4 6

5 5

6 5

7 15

8 20

Total 80

CS61c-Midterm 1 Fall 1998 --- Solutions

2

 Question 0 (1 point): Fill out the front page correctly and put your login correctly at the top of
each of the following pages..

Question 1 (20 points) These questions pertain to the mostly meaningless "program" on the
next page.

a. Place a check in the appropriate column to identify which of the MAL instructions used below
must be changed to more than one machine instruction (that is, requires more than one
instruction when written in pure TAL). And write out their translation into TAL in the
space at the bottom of the page!

b. Certain of the commands are not legal assembly language. Identify them with a checkmark as
well.

c. At a number of points in the execution of this program, the value in register 4 changes. Place a
checkmark in the appropriate column when, after the indicated instruction completes, register 4
has the number 5 in it.

You may assume that the machine you are executing the instructions on is an HP (big-endian)
machine.
(By the way, this is irrelevant)

CS61c-Midterm 1 Fall 1998 --- Solutions

3

.data
word5: .word 5
abc5: .byte ’a’, ’b’,’c’,5
zero: .word 0

.text
__start: # (1a) (1b) (1c)

The main routine # Check if 2 ops Check if it Check if
 # in TAL is illegal [$4]=5
main: lui $4, 0 1 ------------------|----------------|---------------

ori $4, 5 2 ------------------|----------------|------X--------
lui $4, 0 3 ------------------|----------------|---------------
li $4, 0x50005 4 --------X---------|----------------|---------------
la $4, word5 5 --------X---------|----------------|---------------
lw $4, word5 6 --------X---------|----------------|---------------
addi $4,$0,0 7 ------------------|----------------|-------X-------
ori $4, $4,0x101 8 ------------------|----------------|------()tricky
andi $4, $4,0x0 9 ------------------|----------------|---------------
ori $4, $4, 0x5 10 ------------------|----------------|------X--------
lw $4, main+4 11 --------X---------|----------------|---------------
sll $4, $4,16 12 ------------------|----------------|---------------
srl $4, $4,16 13 ------------------|----------------|------X--------
addi $4, $0,4 14 ------------------|----------------|---------------
addi $4, $0,1 15 ------------------|----------------|---------------
lw $4, zero 16 --------X---------|----------------|---------------
addi $4, 4(abc5) 17 ------------------|-------X--------|---------------
add $4, abc5+3(0) 18 ------------------|-------X--------|---------------
lw $4, word5($0) 19 ---------X--------|-------X--------|---------------
sw $4, word5 20 ---------X--------|----------------|---------------
lb $4, abc5 21 --------X---------|----------------|---------------
lb $4, abc5+3 22 --------X---------|----------------|------X--------
subi $4,$0,-5 23 ------------------|----------------|------X--------
done

Translations of MAL instructions
 line number instructions

4 lui $1 ,5 # make sure you know why NO OTHER INSTRUCTION
 # WORKS HERE!!!!

 ori $4, $1, 5

5 lui $1,high-part-of-address-of word5 # ditto comment above
 ori $4,$1,low-part-of-address-of word5

6 lui $1, high-part-of-address-of-word5
lw $4, low-part-of-address-of-word5($1)

 *could be lui, ori to get full address of word5 into $1, then lw $4,0($1)

11 lui $1, high-part-of-address-of-main # see *
lw $4, 4($1)

16 lui $1, high-part-of-address-of-zero
lw $4, 8 ($1)

………..the follow explanations are somewhat repetitive…
19 I thought this was illegal, since word5 is not a 16-bit displacement;

however MAL made it into
 lui $1,high-part of address of word5

 lw $4, 0($1) #ignore $0

lui $1, high-part-of-address-of-word5
20 sw $4, 0($1)

lui $1, high-part-of-address-of-abc5

CS61c-Midterm 1 Fall 1998 --- Solutions

4

21 lb $4, low-part-of-address-of-abc5($1) # probably 4

lui $1, high-part-of-address-of-abc5
22 lb $4, lowpart-of-address-of-abc5+3($1) #probably 7

Grading: We thought of a scale like this, but we didn’t use it but it would have wiped out too
many of you.…
column 1: 5 points for first 5 correct checks. Checks where they don’t belong: -1.
column 2: 2 points for either 2 or 3 checks in right places. Checks where they don’t belong, -1
column 3 : 5 points for 5 checks. Checks where they don’t belong, -1
explanations: up to 5 points for the first 5 correct.

INSTEAD, this is what we did. We looked in specific locations only, and gave points based on
what was there. We ignored all other places. We tried to pick the simplest cases that illustrated
important features of MAL and MIPS. There were too many tricky things done by MAL that we,
in retrospect, thought it was unfair for you to be tested on (and too many of you would have
gotten them wrong!) – in particular MAL figures out a lot of commands that might seem illegal.
And we (the instructor &TAs) were fooled on some of these as well!

So here is what we did. We looked in column c items 2,6,8,10,13,22,23. You got 7 points if you
had the entries all right (note: 8 should be blank, the others are checked). We looked in column a,
entries 1 2 3 4 5, as well as line 7 abc. You got 6 points for getting these all right (all blank except
4,5). Finally, you had to rewrite correctly the lines 4 and 5 (2 points each). All other entries were
ignored. Including all entries other than 7 in column b.

17 points total

CS61c-Midterm 1 Fall 1998 --- Solutions

5

Question 2 (5 points). Here is a 2-instruction TAL program that is intended to
load into register $4 the address in memory of its first instruction, the one at the location "here".

here: ????
step2: addi $4, $31,-4

What instruction would you put in place of ???? __JAL step2__
If you put JAL you got 2 points. If JAL somewhere_not_step2 1 point.

Question 3 (6 points). Write down the number 204810 in hexadecimal and binary.
In binary: 1000 0000 0000, in hex: 800 (1,1 pts)
Assuming you have a 2’s complement representation, what is -2048 as a 16-bit binary number?
1111 0111 1111 1111 is one’s complement. Add one to get
1111 1000 0000 0000 (2 pts)

Now write that number as a positive hexadecimal quantity. 0xf800 (2 pts)

Question 4 (6 points). What do the following expressions evaluate to in C? (Show your work)

((1 & 4) | 3) & (~5) = ((0..1&0..100)|0..11) & (1…1010) = (0|0..11)&1…1010 = 2 (3 pts)

((1 && 4) || 3) && (!5) = ((true and true) or true) and false = false (0) (3 pts)

Question 5 (5 points). As we have discussed in lecture, one strategy in setting up register
usage is to have one register, a global pointer, GP point to the beginning of the data segment of
your program. That way it is easy for all programs to refer to data like error message strings
with simple offsets from that base register.

Instead of setting GP to the beginning(numerically lowest) address in the .data segment, say
0x10000000, it may be useful to set it somewhere above
the lowest address in use, say to 0x10008000. Why?
This way it is possible to use positive and negative offsets from the global pointer, and address
twice as many words of data space. If you said something about addressing more locations but
failed to mention negative offsets, you got between 0 and 2 points. I don’t know why some people
who said something like “it is faster searching from the middle” but this is so totally wrong, you
should make sure you are cured of whatever notion suggested that answer to you. (5 points)

Question 6 (5 points). On the MIPS, architecture, the only addresses that one can branch to
are on full-word boundaries (have 2 0s at the end), and therefore all branch instructions always
use the 16-bit immediate as an 18 bit signed field. Since one can only load words from a full-word
location, why aren’t ALL the offsets in all the load and store instructions also multiplied by 4?

The load and store byte operations have to operate at any byte, not just word boundaries, so that
requires full addressing. The load and store word instructions can also use odd offsets because
the contents of registers may be odd (actually, not a multiple of 4). It is expected in these
circumstances that that the sum of the two will be divisible by 4. It is not possible for the PC to
be other than at a word boundary, and so the offset in the branch instructions must also be
divisible by 4 to be sensible.

CS61c-Midterm 1 Fall 1998 --- Solutions

6

Question 7 (15 points). Here is a simple program to compute a function of one argument. It is
based on a program you have seen in the lab, but this time it is not recursive.

a. See if you can make it smaller by eliminating (crossing out) unnecessary lines of assembler.

__start:
li $a0,4 #f(4)
jal f
done

f:
sub $sp,$sp,8 # adjust the stack for 2 items
sw $ra,4($sp) # save the return address
sw $a0,0($sp) # save the argument n
addi $v0,$zero,1 # initialize answer

loop: slt $t0,$a0,2 # test for n < 2
beq $t0,$zero,L1 # if n>1, go to L1

addi $sp,$sp,8 # pop off 2 items off stack
jr $ra #return to after jal

L1: mul $v0,$a0,$v0
sub $a0,$a0,1 # n >=1; argument gets (n-1)
j loop

(4 points for realizing that there is no need to save and restore things that don’t change. Most
people got this all right. If you ADDED lines, you didn’t read the question.)

b. There is no subi instruction on MIPS. Make believe you are the MAL assembler and convert
subi $a0,$a0,1 into one or more actual machine instructions (express these
 in TAL):
addi $a0,$a0,-1
or possibly something longer like
addi $at, $0,1
sub $a0,$a0,at

If you used other registers than $at , or you used non TAL instructions, then you were wrong and
got 0.
(3 points)

c. Assume that the location of the instruction beq $t0,$zero,L1
is 0x00400028.
That instruction includes a field with a 16-bit displacement representing the distance K to
branch to get to L1. (In hexadecimal), what is the value of K? (explain) . The displacement is
relative to the next instruction, since the PC will be set to PC+4 while executing the beq.
 The label L1 is 2 words (8 bytes) further along. Therefore the displacement is 8, but the actual
field K will be 2, since it is always shifted to the left by 2 bits for use.
Although the answer was 2 , partial credit was given for 8, 3, 12, for various excuses (4 points)

e. Finally, what does f(4) return? This is a version of factorial; it returns 24 in $v0 . Virtually
everyone got this right. Though it computes f(0) wrong.

(4 points)

CS61c-Midterm 1 Fall 1998 --- Solutions

7

Question 8 (20 points). Translate the following C procedure into MIPS assembler. Try to keep
it brief! Use the usual conventions which assume that the arguments to procedures are kept in
$a0-$a4 (regs 4-7) , temporary variables (preserved across call) are kept in $s0-$s7 (regs 16-23) .
These can be used for internal computation but must be preserved by the callee across procedure
calls. The return value is $v0 (reg 2). [Points: for structure of subroutine/return; 5; successful
return value setup: 5. Branching, testing: 5, getting a[x] into $a0 for call: 5; Excess number (>2)
random errors, -2.]

/* Question 8 */

int foo(int x, int *a){
 int z;
 if (x < 0) z = 0;
 else z = bar (a[x]);
return z;
}

foo: addi $sp,$sp,-4
sw $31, 0($sp) #save return address
bgez $a0,else # x>=0 goto else; use MAL
addi $v0,$0,0 #z=0 leave it in return value!
b return

else: sll $a0,2 #multiply x by 4
add $a0,$a0,$a1 #get address of a[x] into register $a0
lw $a0,0($a0) #get value a[x] into $a0
jal bar #call bar

return:
lw $31, 0($sp) #put return address back in $31
addi $sp,$sp,4 #pop stack
jr $31

Notes:. You should put in comments, generally. It is not so clever to do checking before saving
stuff on the stack, even if it is possibly faster. Reason: you stand a substantially higher chance of
making a programming error. People who pushed stuff on the stack in the middle of the program
did so erroneously in about 30% of the cases, and so lost points by being clever.

Many students seemed to think there was an instruction format like lw $a0, $a0($a1) which there
is definitely NOT in MIPS. Some people left out the lw. Be sure you understand the difference
between the address and the value of a quantity! Many people left out the label “foo”. A few people
save registers they did not use (no points off, but quite unnecessary). Some people seemed to use
elaborate contortions to multiply an integer (x) by 4. The simplest is probably sll; the P&H book
uses two adds to double. Using mul is slower and more code.

