OS5 70

Discrete Mathematics for CS

Fall 2000 Papadimitriou / Russell / Sinclair MT2 SO]

Solutions to Midterm 2

1. (20 pts.) Extended GCD

(a)

(5 pts) Recall that, on input (a,b) with a > b, the extended gcd algorithm returns a
triple (d,y, z) such that d = ged(a, b) and bz + ay = d. Since ged(21,13) = 1, this will
do the trick for us.

Running extended ged on input (21, 13) yields the following sequence of recursive calls:

call (a,b) | return (d,y, x)
(21,13) (1,5,-8)
(13,8) (1,-3,5)
(8,5) (1,2,-3)
(5,3) (1,-1,2)
(3,2) (1,1,-1)
(2,1) (1,0,1)

(1,0) (1,1,0)

The returned value in the first line indicates that we may take x = —8 and y = 5 to
satisfy 13z + 21y = 1.

A remarkable number of people “guessed”, or otherwise acquired, a correct solution (per-
haps using the fact that 21 and 13 are successive Fibonacci numbers). Since guessing
isn’t always that easy, you should make sure that you are able to solve such problems
systematically via the above algorithm.

(5 pts) The painless way to do this is to note that the left-hand side (lhs) is the same as
in part (a), while the right-hand side is multiplied by two. So we just need to multiply
the z,y values found in part (a) by two, giving z = —16 and y = 10. [Note that this
approach would work for any equation of the form ax + by = c¢: a solution exists iff ¢ is
an integer multiple of d = gcd(a, b), say ¢ = kd. Then we can run extended gcd to solve
az + by = d, and then multiply the resulting z,y by k to solve the desired equation.]

A surprising number of people decided that there is no solution in this case, quoting as
a reason the fact that the rhs is not equal to ged(13,21). Clearly this is not enough: you
would have to show that the rhs is not an integer multiple of the gcd (see part (c)).

(5 pts) There is no integer solution. This follows from the fact that the rhs, 1, is not
an integer multiple of gcd(33,21) = 3; however, you should justify this conclusion as
follows. Plainly, for any integers x,y, 33z + 21y is an integer multiple of 3, i.e., it is of
the form 3z for some integer z. But the equation 3z = 1 is clearly not satisfied by any
integer z.

Almost everybody stated that there is no solution in this case. Many people, though,
failed to justify this claim properly; the most common bogus argument was that the rhs
is not equal to ged(33,21), which is not enough as part (b) shows.



(d) (5 pts) Since ged(33,21) = 3, we can either run extended ged directly on inputs (33, 21),
or we can first divide by 3 to get 11z + 7y = 1 and then run extended gcd on inputs
(11,7). Either way we get the solution z = 2, y = —3.

Almost everybody got this — though see above comments for part (a).
2. (20+5 pts.) Perfect Squares

(a) (6 pts) By brute force, the squares of the numbers 0, 1,. .. ,10 mod 11 are 0,1,4,9,5,3,3,5,9,4,1.
So the perfect squares mod 11 are 0,1, 3,4,5,9.

Pretty much everybody got this right.

(b) (8 pts) Let 0 <y < p. If 2% = y forsome z € {0,1,...,p—1} then clearly also (—z)? = y;
and since p is odd and z # 0, —x = p — = # =z, i.e., x and —z are distinct. So if y has
one square root then it has at least two.

Now suppose z,w are two distinct square roots of y. Then z?> — w? = 0 mod p, or
equivalently, (z + w)(z — w) = 0 mod p. This happens iff x + w =0mod p or x — w =
0 mod p, i.e., iff x = +w. Thus the only possible square roots of y are £x. Hence y has
either zero or two square roots.

Most people observed that, if x is a square root of y, then so is —x. This shows that y

has at least two square roots. But many people completely omitted to show that y cannot
have more than two roots; this is the main issue here.

(c) (6 pts) Squaring each of the numbers 1,2,...,p — 1 yields a perfect square, and these
are the only possible squares except for 0. By part (b), each of these squares has exactly
two roots, i.e., it occurs exactly twice in the above set of p — 1 squares. So we get a total
of 7%1 +1= ’HQ'I perfect squares (where the extra +1 is for 0).

This was generally done OK, even by those who missed part (b).

(d) (5 pts, extra credit) The crucial point here is that no number y in {0,1,...,p — 1} can
have more than three cube roots. This is because any cube root x is a root of the
degree-3 polynomial 3 —y = 0. Hence if we cube all the numbers in {0,1,...,p—1}, no
cube appears more than three times. Hence there are at least p/3 distinct cubes. [Notice
that we can’t figure out the ezact number of cubes, as we did for squares, because the
equation z° — y = 0 may have fewer than three roots.]

Very few people gave a clear answer to this part.

3. (20 pts.) RSA

(a) (4 pts) First we note that since pg = 33 that p = 3 and ¢ = 11 (or vice versa, but it is
makes no difference to the rest of the problem). Your public exponent should be 7, as 5
is not relatively prime to (p — 1)(¢ — 1) = 20 and therefore has no multiplicative inverse
modulo 20. We also need to know that 7 has a multiplicative inverse modulo 20 which
we see in the next part of this problem.

(b) (4 pts) Your private exponent is the multiplicative inverse of your public exponent mod-
ulo (p—1)(g—1). In this case your private exponent should be 3 as 7-3 = 21 = 1 mod 20.
Your private key can be (33, 3).

(c) (6 pts) To encrypt the message 2 you raise it to the public key exponent 7 modulo
p-q=33. This is gives 128 mod 33 = 29 as the encrypted message.
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(d) (6 pts) You would sign the message by encrypting it using the private key, this would
give 22 mod 33 = 8. One might send this by itself, or possibly 2,8 as a pair with the
message in plain text followed by the message encrypted by the private key, leaving the
message readable immediately, but allowing others to verify that it was in fact signed.
Finally one might treat 23 as the new message and encrypt this using the recipient’s
public key to send a signed encrypted message. Note that in our situation encrypting
anything larger than 2 is problematic, in addition we do not know the recipient’s public
exponent.

4. (20 pts.) Polynomials

(a) A function f(z) on GF), is defined by its values on all inputs from GF,: f(0), f(1), ...,
f(p—1). For each input z, f(z) can be one of p elements and we have to choose f(z) p
times (once for every x). Therefore, there are pP functions.

(b) A polynomial is defined by its coefficients ag, ..., ap—1. There are p coefficients a; and
each of them can be one of p elements of GF},. Therefore, there are p? polynomials.

(c) Let g(x) = ap—12P~t + ap_22P~2 + ... + ap and 7(x) = by_12P~ + by_oxP 2 + ... + bo.

Then, q(z) — r(z) = (ap—1 — bp—1)zP 1 + (ap—2 — bp—2)zP 2+ ...+ (ap — by). Since both
g(z) and r(z) are polynomials of degree at most p — 1, ¢(z) — r(z) is a polynomial of
degree at most p — 1 as well.
If g(z) and r(x) are apparently distinct, then, for some 7, a; # b; and a; — b; # 0. Thus,
q(z) —r(z) is a polynomial of degree at most p — 1 and it is not identically 0. Therefore,
g(z) — r(z) must have at most p — 1 roots. Since GF), contains p values, there must be
z € GF, for which ¢(z) — r(z) # 0 and ¢(z) # r(z). This means that ¢(z) and r(z) are
different functions.

A lot of people claimed that, if a coefficient of q(x) — r(z) is not 0 then there must be x
for which q(z) — r(z) # 0. This is true for integers but, in general, not true for GF,.
For example, 2”7 —x = 0 for all x in GF,. Because of this, it is very important to notice
that q(z) — r(z) has degree at most p — 1 and, therefore cannot be 0 for p values of x
unless all of its coefficients are 0.

(d) Every polynomial defines a function and, by (c), no two polynomials define the same
function. Therefore, the number of functions that are defined by some polynomial is the
same as the number of polynomials. Since there are p? polynomials (part (a)) and pP
functions (part (b)), this means that every function is defined by some polynomial.
The most common mistake in this part was forgetting to mention part (c). It is not
enough to have the same number of functions and polynomials. It could be the case that
some function was defined by two (or more) polynomials and some other function by no
polynomial and only using part (c) shows that this is impossible.

5. (2045 pts.) Probability spaces

(a) (6 pts) The sample space Q) is the set of possible atomic events that can occur—in this

case, the (12000) possible committees of 20 senators chosen from 100.

Since the senators are chosen at random, every set of 20 senators is equally likely. Since
the probabilities of the sample points must sum to 1, the probability of each sample
point is 1/|Q| = 1/(120(?).

Several people confused the sample space with its size; the sample space is a set of atomic

events, not a number. Many people forgot to give the probability of each sample point,
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and later assumed a value of 1/(12000) without justification. It is important to realize that

not all probability spaces are uniform/

(b) (6 pts) Because the probability space is uniform, P(CC) = |CC|/|€}|. To compute the
number of outcomes in C'C, simply note that the two California senators occupy two
seats, leaving 18 seats to be filled from 98 senators. Each way of filling those seats
corresponds to exactly one outcome in C'C, hence

(3) 98! 801200 20-19 19

("00) T 801181 1000  100-99 495

~ 0.0384

pP(CC) =

Almost everyone got this right who did it by counting atomic events in CC. Almost
everyone who tried a more “intuitive” argument got it wrong. Some people did not put
the answer in reduced form, which makes it difficult to compare probabilities in part
(d).—

(c) (6 pts) Let us begin with the definition of the quantity we want:

conw) |ccnwl|Q  |CCnW|

P(W) @ (W] W]

because the space is uniform. We evaluate the denominator first. W means “at least

one senator from Wyoming,” which is a disjunctive event. Often, it is easier to work

with a conjunctive event: let =W be the event that NO senators from Wyoming are

chosen—which means the 20 senators are chosen from the remaining 98. Then

100 98
W =19 - |-W| = (20) - (20)

Similarly, we have

pccyw) = £

ICCAW| =|CC| - |CCN-W| = (98) - (96)

18) ~ (s
Hence
98) . (96)
(35)- (%)  20.19-(98-97—80-79) 30267
P = = = ~ U.
(ccw) (10) = (%) ~ 98-97-(100-99 —80-79) ~ 850787 00356
20 20

We apologize for the horribleness of the arithmetic, which was unintentional. Anyone
who got the reasoning right up to that point got full credit; we gave some extra credit for
perfect answers.

The majority of answers took the following form: if we have chosen one senator from
Wyoming, then there are ((‘fg) ways to complete the committee; similarly, there are (?;)
ways to complete the committee if we have chosen one from Wyoming and two from
California. (Some people correctly multiplied each of these by 2 because there are two
ways to choose the first Wyoming senator.) This gives (?;)/(?g) = 19/539, which is
close to the true answer (within 1%) but not correct. The error comes from double-
counting the cases where both Wyoming senators are chosen. We gave half credit for
this answer.

(d) (2 pts) CC and W are not independent, since P(CC) # P(CC|W). This is easy to tell
if the probabilities are in reduced form.

Some people gave a qualitative argument as to why they were dependent, and some gave a
qualitative argument as to why they were not. Qualitative arguments for dependence are
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unconvincing, because two events can be causally connected in such a way that the effects
of the first on the second exactly cancel, leaving independence. Consider the probability
of rolling an odd total with two dice, given that the first die is even. The latter event is
clearly “relevant” to the former, but the two are mathematically independent.

(e) (5 pts, extra credit) Let M M be the event that at least one state has two members on
the committee. As before, it’s easier to deal with the negation——M M means that no
states have two members on the committee. In this case, we can make the committee

by first g(e)zlecting 20 states in one of (gg) ways, then selecting one senator from each in
2

one of ways:
(50) . 220
P(MM)=1- 22— ~0.908
(20)

A wvariety of other answers were obtained, ranging from 10°8 to 190. It’s always a good
idea to check your answer for numerical plausibility!
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