University of California at Berkeley

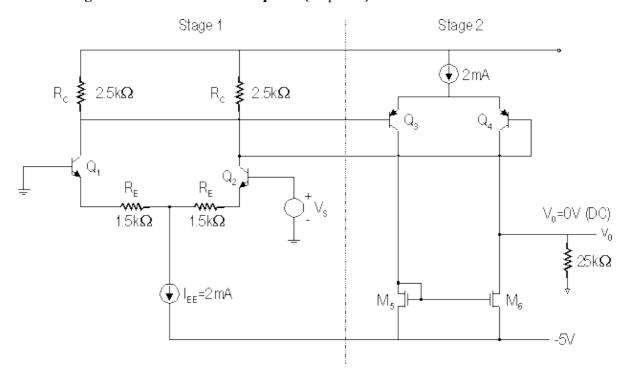
College of Engineering Department of Electrical Engineering and Computer Sciences

R. T. Howe (Spring 1993)

EECS 105

Final Examination: May 17, 1993

Ground Rules:


- Closed book; three 8½ " x 11" crib sheets (both sides)
- Do all work on exam pages
- Answers within ± 10% of the correct answer will recieve full credit.
- Default bipolar transistor parameters: npn: $\beta_{\rm n}$ =100, $V_{\rm A_{\rm n}}$ =100 V, $C_{\rm n}$ =15pF, $C_{\rm \mu}$ =1pF pnp: $m{eta}_{\rm p}$ =50, ${
 m V}_{\rm Ap}$ =50 V, ${
 m C}_{\pi}$ =30pF, ${
 m C}_{\mu}$ =2pF

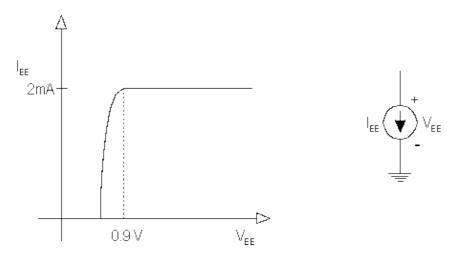
• Default MOS transistor parameters: NMOS: $\mu_n \text{C}^{\dagger}_{\text{ox}} = 25 \mu \text{AV}^2$, $\lambda_n = 0.01 \text{ V}^4$, $V_{\text{Tn}} = 1 \text{ V}^4$

PMOS: $\mu_{\rm p} {\rm C}_{\rm ox}^* = 10 \mu {\rm AV}^2$, $\lambda_{\rm p} = 0.02 \, {\rm V}^4$, ${\rm V}_{\rm T_0} = -1 \, {\rm V}$

Page 1

1. Two-Stage BiCMOS Differential Amplifier [20 points]

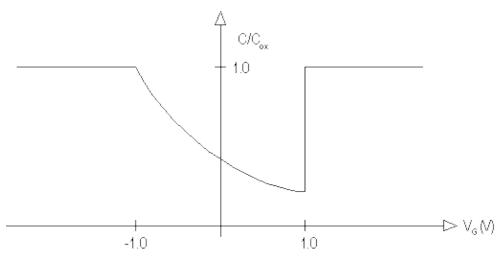
(a) [2 points] Draw the differential half circuit for Stage 1.


(b) [4 points] Draw the differential two-port small-signal model for *Stage 1* and find the numerical values of its parameters.

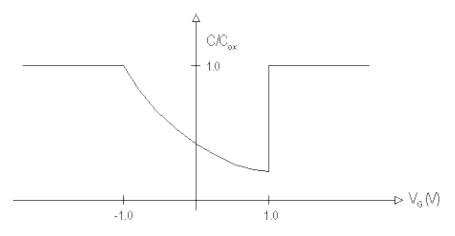
Page 2

- (c) [4 points] Draw the differential two-port small-signal model for *Stage 2* and find the numerical values of its parameters.
- (d) [4 points] Find the numberical value of the small-signal gain vo/s.

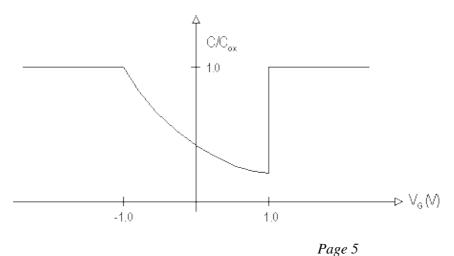
Page 3


- (e) [2 points] What is the maximum DC common-mode input voltage, V_{CM,max}, for which all devices are forward active (BJT) or saturated (MOS)?
- (f) [2 points] What is the minimum DC common-mode input voltage, V_{CM,min}, for wich all devvices are forward active (BJT) or saturated (MOS)?

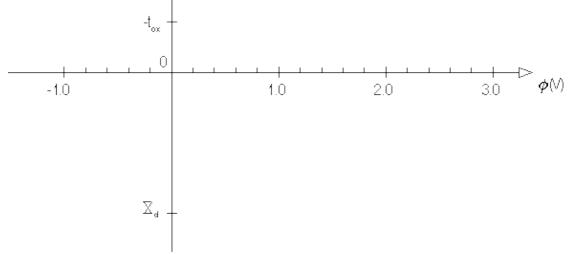
(g) [2 points] What is the DC power dissipation for this amplifier?

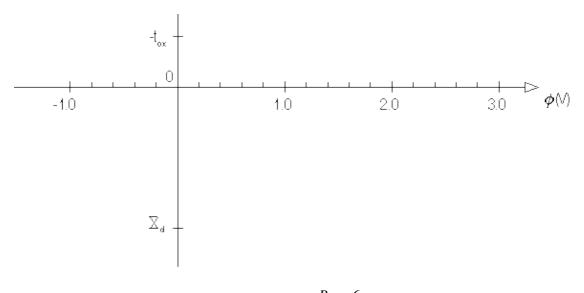

Page 4

2. Pictorial MOS Electrostatics [20 points]

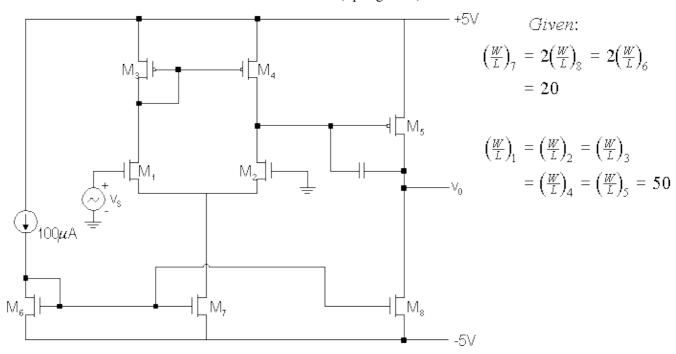


A MOS C-V curve is shown above for an n+ polysilicon gate and a p-type substrate, with Na=1E-16 cm¯ ³.


(a) [5 points] Sketch below the C-V curve for this structure when the oxide thickness tox is reduced. Your plot should be *qualitatively correct* -- the original C-V curve is reproduced to make comparison easier.

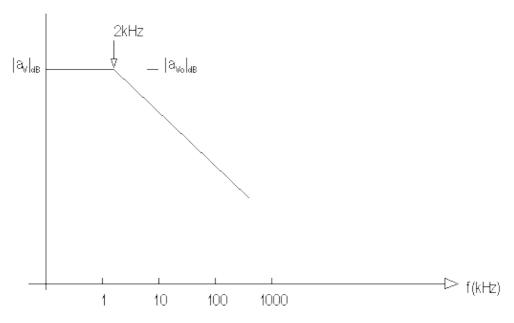

(b) [5 points] Sketch below the C-V curve for the *complemenatary* structure, for which the gate is p+ polysilicon and the substrate is n-type with N_a =1E-16 cm¯ ³. Your plot should be *qualitatively correct* -- the original C-V curve is reproduced to make comparison easier.

(c) [5 points] Sketch the electrostatic potential throught the original structure when it it sin *thermal* equilibrium (VG=0V). Given the polysilicon potential is $\phi_{n+}=0.55$ V, surface potential $\phi_{s}=\phi(x=0)=0$ V, x=0 corresponds to the oxide/silicon interface.



(d) [5 points] Sketch the electrostatic potential throught the original structure when V_G=2V

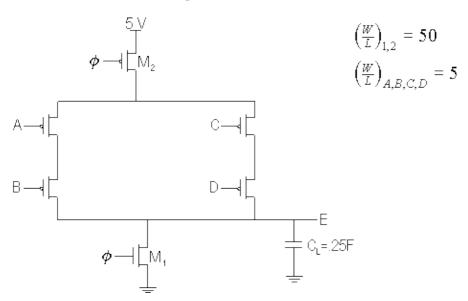
Page 6


3. MOS Amplifier Frequency Response [20 points]

- (a) [4 points] Find the DC voltages at the drain of M2 and at the source of M2.
- (b) [4 points] Find the small-signal voltage gain avo=vo/vs at low frequencies (consider Cc open).

Page 7

(c) [4 points] Given that the magnitude (in dB) plot for the voltage gain has a pole at 2kHz (see plot), find the numerical value of C_c . You may assume that any Miller capacitor dominates all other device capacitors (e.g., C_{gs}).

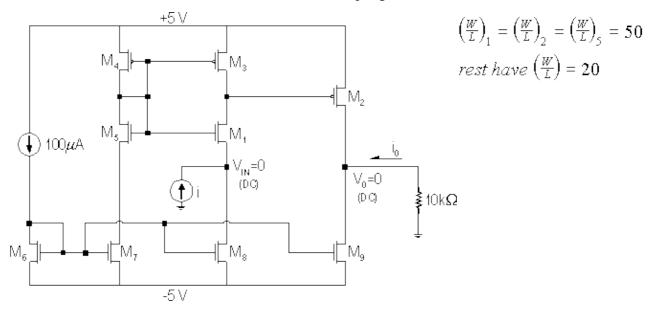


(d) [4 points] Find the frequency for which the magnitude of the small-signal voltage gain $|a_v|dB=0dB$. If you couldn't solve part (b), assume that $a_{vo}=14,000$.

- (e) [4 points] Given that the channel length of all MOSFETSs is L=3 µ m and that the oxide capacitance per unit area is C_{vo} =14,000.
- (d) [4 points] Given that the channel length of all MOSFETs is L=3 µ m and that the oxide capacitance per unit area is C_{ox} =0.5 fF/µ m² (1 fF=1E-15 F), find the differential imput *capacitance* of this op amp.

Page 8

4. Dynamic MOS Logic [20 points]


- (a) [4 points] What logic function is implemented by this dynamic logic gate? Use the + sign for "OR", a dot for "AND", and an oversocre for "NOT". There is no need to simplify the expression. *Hint*: transistor M₁ fuctions to "pre-ground" the load capacitance C_L, using clock waveform ϕ (t).
- (b) [4 points] How short a 5-V clock pulse (length T^{ϕ}) can be used to pre-gound the load capacitance, assuming that the minimum T^{ϕ} is 5 times the propagation delay found in discharaging CL from 5 V ot 0 V? *Hint*: consider the appropriate transistor to be saturated in finding the propagation delay.

Page 9

- (c) [4 points] Sketch vE(t) on the graph below, for the case where A, B, C, and D are 0 V when t= T^{ϕ} . You are given that vE(0¯)=5 V just before the clock transitions to 5 V at t=0.
- (d) [4 points] What is the propagation delay for the situation in part (c) (all inputs low when the clock goes low)? You can consider that M₂ is so wide that it fuctions as a short-circuit when it's "on".
- (e) [4 points] What is the propagation delay when A, B, D = 0 and C = 1 (5 V) when the clock ϕ (t) goes low? If you couldn't solve part (c), assume that its answer was $t_P=1$ ns.

Page 10

5. Small-signal CMOS current amplifier [20 points]

- (a) [4 points] Redraw the schematic, replacing all transistor current sources by the current-source symbol (with the numerical value indicated) and all transistor voltage sources by batteries (with the numberical value indicated).
- (b) [4 points] What is the numerical value of the input resistance Ri of this current amp?

Page 11

- (c) [4 points] What is the numerical value of the output resistance (don't include the load resistor, of course!) for this current amp?
- (d) [4 points] What is the short-circuit current gain A_i (v_0 a small-signal short to ground) for this current amplifier? Draw the two-port model for the amp.
- (e) [4 points] What is the overall current gain io/iin with the 100 k Ω load resistor connected to the amplifier?

Page 12

© 1994 by R. T. Howe translated to HTML by Walter Hsiao Eta Kappa Nu (November 1995)