EE105, Spring 1997 Midterm #2 Professor R. T. Howe

(NOTE: Greek letters are sometimes written in Roman alphabet in all caps. Subscripts are written A_1, etc. Micro is sometimes represented by a 'u'.)

Default bipolar transistor parameters:

Default MOS transistor parameters: note that LAMBDA depends on L!

NMOS:
$$MU_nC_ox = 50 \text{ uAV}^2$$
, $LAMBDA_n = [0.1/L]V^1(L \text{ in um}) V_n = 1V$. PMOS: $MU_pC_ox = 25 \text{ uAV}^2$, $LAMBDA_p = [0.1/L]V^1(L \text{ in um}) V_n = -1V$.

Problem #1

BiCMOS Transresistance Amplifier [22 points]

- (a) [4 pts.] Draw the two-port small-signal model for this two-stage amplifier, with the small-signal source (and R_S) and the load resistor R_L attached. Your model should show the cascaded models for each stage; there is no need to substitute the expressions for the input and output resistances and gain elements for each stage.
- (b) [4 pts.] Find the numerical value of the input resistance of this amplifier, R_in.
- (c) [4 pts.] Find the numerical value of the output resistance of this amplifier, R_out. Your answer need only be correct to within plus or minus 5% for full credit.
- (d) [6 pts.] Find the numerical value of the transresistance R_m . Note that $R_s = infinity$ and $R_L = infinity$ for calculating this two-port parameter. Your answer need only be correct to within plus or minus 5% for full credit.
- (e) [4 pts.] If the current supplies I_BIAS, i_SUP,1, and i_SUP,2 all need a minimum voltage of 0.5 V across

them in order to function, what are the maximum and minimum values of v_OUT? (In other words, find the output swing of the transresistance amplifier.)

Problem #2

Static CMOS Logic Gate [18 points]

- (a) [5 pts.] What is the logic operation performed by the above circuit? In other words, what is the logical expression for Q in terms of the three inputs, A, B, and C? Note: you can use a truth table to answer this question.
- (b) [4 pts.] We would like to have the worst case low-to-high and high-to-low propagation delays to be equal. Find the required relationship between the width-to-length ratio (W/L)_n of the NMOS transistor and the width-to-length ratio (W/L)_p of the PMOS transistors.
- (c) [5 pts.] This logic gate has no load capacitance or wire capacitance (it does have parasitic drain-to-bulk capacitances, however.) Find the channel length transistors $L_p = L_n$ so that the worst case low-to-high propagation delay $t_p = 10^-11s = 100$ ps.

Given: $MU_p = 100 \text{ cm}^2/\text{Vs}$, $C_ox = 2.5 \text{ fF/um}^2$, and the drain-to-bulk capacitance of each transistor is $C_ox = 100 \text{ cm}^2/\text{Vs}$, $C_ox = 100 \text{ cm}^2/\text{Vs}$, $C_ox = 100 \text{ cm}^2/\text{Vs}$, and the drain-to-bulk capacitance of each transistor is $C_ox = 100 \text{ cm}^2/\text{Vs}$.

If you couldn't solve part (b), you can assume that $(W/L)_p = 2.5(W/L)_n$ for this part (not the correct answer to (b), of course.)

(d) [4 pts.] Find the ratio of the **best case** propagation delays.

t_PHL/t_PLH

If you couldn't solve (b), you can assume that $(W/L)_p = 2.5 (W/L)_n$ for this part (not the correct answer to (b), of course.)

Problem #1

Problem #3

Bipolar Transistor Physics [10 points]

Note: the default npn transistor parameters do not apply to this problem!

Given:

N_dE = 10^18cm^-3, N_aB = 5 X 10^16cm^-3, N_dC = 4 X 10^15cm^-3.

The base and emitter widths are $W_B = W_E = 0.25$ um. The area of the emitter-base junction is $A_E = 1000$ um² and the area of the base-collector junction is $A_C = 3000$ um². The electron diffusion coefficient in the base is $D_nB = 10$ cm²/s and the hole diffusion coefficient in the emitter is $D_pE = 5$ cm²/s. The charge on an electron is $q = 1.6 \times 10^{-19}$ C.

- (a) [5 pts.] For the bias condition where $V_{OUT} = 2.5V$, sketch the minority carrier concentration in the base on the graph below. Label the numerical value of n_{DB} (x = 0).
- (b) [5 pts.] Find the numerical value for the bias voltage V_BIAS for which the bipolar transistor just enters saturation ($V_OUT = 0.2V$).

Solutions!

Posted by HKN (Electrical Engineering and Computer Science Honor Society)
University of California at Berkeley
If you have any questions about these online exams
please contact <u>examfile@hkn.eecs.berkeley.edu.</u>

Problem #3