EE105, Spring 1997 Midterm #2 Professor R. T. Howe (NOTE: Greek letters are sometimes written in Roman alphabet in all caps. Subscripts are written A_1, etc. Micro is sometimes represented by a 'u'.) Default bipolar transistor parameters: Default MOS transistor parameters: note that LAMBDA depends on L! NMOS: $$MU_nC_ox = 50 \text{ uAV}^2$$, $LAMBDA_n = [0.1/L]V^1(L \text{ in um}) V_n = 1V$. PMOS: $MU_pC_ox = 25 \text{ uAV}^2$, $LAMBDA_p = [0.1/L]V^1(L \text{ in um}) V_n = -1V$. ### Problem #1 BiCMOS Transresistance Amplifier [22 points] - (a) [4 pts.] Draw the two-port small-signal model for this two-stage amplifier, with the small-signal source (and R_S) and the load resistor R_L attached. Your model should show the cascaded models for each stage; there is no need to substitute the expressions for the input and output resistances and gain elements for each stage. - (b) [4 pts.] Find the numerical value of the input resistance of this amplifier, R_in. - (c) [4 pts.] Find the numerical value of the output resistance of this amplifier, R_out. Your answer need only be correct to within plus or minus 5% for full credit. - (d) [6 pts.] Find the numerical value of the transresistance R_m . Note that $R_s = infinity$ and $R_L = infinity$ for calculating this two-port parameter. Your answer need only be correct to within plus or minus 5% for full credit. - (e) [4 pts.] If the current supplies I_BIAS, i_SUP,1, and i_SUP,2 all need a minimum voltage of 0.5 V across them in order to function, what are the maximum and minimum values of v_OUT? (In other words, find the output swing of the transresistance amplifier.) ## Problem #2 Static CMOS Logic Gate [18 points] - (a) [5 pts.] What is the logic operation performed by the above circuit? In other words, what is the logical expression for Q in terms of the three inputs, A, B, and C? Note: you can use a truth table to answer this question. - (b) [4 pts.] We would like to have the worst case low-to-high and high-to-low propagation delays to be equal. Find the required relationship between the width-to-length ratio (W/L)_n of the NMOS transistor and the width-to-length ratio (W/L)_p of the PMOS transistors. - (c) [5 pts.] This logic gate has no load capacitance or wire capacitance (it does have parasitic drain-to-bulk capacitances, however.) Find the channel length transistors $L_p = L_n$ so that the worst case low-to-high propagation delay $t_p = 10^-11s = 100$ ps. Given: $MU_p = 100 \text{ cm}^2/\text{Vs}$, $C_ox = 2.5 \text{ fF/um}^2$, and the drain-to-bulk capacitance of each transistor is $C_ox = 100 \text{ cm}^2/\text{Vs}$, $C_ox = 100 \text{ cm}^2/\text{Vs}$, $C_ox = 100 \text{ cm}^2/\text{Vs}$, and the drain-to-bulk capacitance of each transistor is $C_ox = 100 \text{ cm}^2/\text{Vs}$. If you couldn't solve part (b), you can assume that $(W/L)_p = 2.5(W/L)_n$ for this part (not the correct answer to (b), of course.) (d) [4 pts.] Find the ratio of the **best case** propagation delays. ### t_PHL/t_PLH If you couldn't solve (b), you can assume that $(W/L)_p = 2.5 (W/L)_n$ for this part (not the correct answer to (b), of course.) Problem #1 ### Problem #3 Bipolar Transistor Physics [10 points] Note: the default npn transistor parameters do not apply to this problem! #### Given: N_dE = 10^18cm^-3, N_aB = 5 X 10^16cm^-3, N_dC = 4 X 10^15cm^-3. The base and emitter widths are $W_B = W_E = 0.25$ um. The area of the emitter-base junction is $A_E = 1000$ um² and the area of the base-collector junction is $A_C = 3000$ um². The electron diffusion coefficient in the base is $D_nB = 10$ cm²/s and the hole diffusion coefficient in the emitter is $D_pE = 5$ cm²/s. The charge on an electron is $q = 1.6 \times 10^{-19}$ C. - (a) [5 pts.] For the bias condition where $V_{OUT} = 2.5V$, sketch the minority carrier concentration in the base on the graph below. Label the numerical value of n_{DB} (x = 0). - (b) [5 pts.] Find the numerical value for the bias voltage V_BIAS for which the bipolar transistor just enters saturation ($V_OUT = 0.2V$). ### **Solutions!** Posted by HKN (Electrical Engineering and Computer Science Honor Society) University of California at Berkeley If you have any questions about these online exams please contact <u>examfile@hkn.eecs.berkeley.edu.</u> Problem #3