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Problem 1 (Amplitude modulation.) 40 Points

(a) (10 Pts) For the discrete-time signal z[n] it is known that X(e*) = 0, for |w| > 7/4.
Determine the range of w for which the DTFT of y[n] = cos(%En)z[n] must be zero. Hint:
Select an example spectrum X (e’*) and sketch the resulting DTFT of y[n].
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(b) (10 Pts) The real-valued data signal z(t) is known to be band-limited, i.e., X (jw) = 0, for
|w| > W . Consider the block diagram of Figure 1, where

)1, for |w| <w. oy} 1, for |w| > 2w,
Hi(jw) _{ 0  otherwise, and  Hp(jw) —{ 0 otherwise. (3)

e Pick an arbitrary (bandlimited) example spectrum for z(t), and sketch the corresponding
spectrum of the signal y(t).

e For what values of-the parameters W and w, is it possible to recover z(t) from y(t)?

e Provide the block diagram of a system that recovers z(t), given y(t), carefully specifying

all involved parameters. o ' H ( . \
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(c) (10 Pts) The real-valued data signal z(t) is known to be band-limited, i.e., X (jw) = 0, for
lw| > W. The goal is to perform standard (i.e., double-sideband) AM with carrier frequency
we > 5W. Unfortunately, the only type of modulator available is multiplication by cos(%:t).
Otherwise, addition, scalar multiplication, and filters can be used. Draw the block diagram of
the system that achieves our goal, and if your system uses a filter, specify the desired frequency

response. Hint: Pick an example spectrum for z(t) and sketch the spectra of intermediate
signals to maximize your chances for partial credit.
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(d) (10 Pts) The real-valued data signal z(t) is known to be band-limited, i.e., X (jw) =0, for
|w| > W . The goal is to perform single-sideband AM with only the lower sideband, with carrier
frequency w, > 5W . Again, you can use addition, scalar multiplication, and multiplication by
cos(wmt), for arbitrary w,,. However, this time, you only have fized ideal low-pass filters with
the following frequency response:

H(jw) (4)

1, for |w| <w/2
0  otherwise.

Draw the block diagram of a system that achieves the goal, clearly specifying all involved pa-
rameters, such as the frequencies of the modulators, etc. Hint: Pick an example spectrum for
z(t) and sketch the spectra of intermediate signals to maximize your chances for partial credit.
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Problem 2 (PAM.)

Two pulses are suggested for a PAM system:

p1(t) = aetu(t),

and  po(t) = be u(t),

30 Points

(5)

where a and b are positive real numbers that will be selected appropriately, leading to

o0

2

vi(t) =

xlklpi(t — kT), fori=1,2,

k=—o00

where we choose T = 1.

We suppose that the data signal is bounded to |x(t)] < 1.

problem, we want to compare the two pulses p;(t) and po(t).

(a) (20 Pts) Select a = 2

energy is the same for p(t) and for po(t).

(6)

In this

and b = 2v/10. For this choice, it can be shown that the pulse
(You don’t have to show this!) Now consider the

transmission of p1(t) and ps(t), respectively, across a communication channel with impulse
response h(t) and corresponding frequency response

H(jw) =

This yields an output signal z;(t) =

1
6+ jw’

(p; = h)(t), for ¢ = 1,2.

e Evaluate the energy of the received signals, z;(¢) and z3(t), respectively.

e Which received signal has the larger energy?

(7)

e How is it possible that even though the two pulses have the same transmitted energy, their

received energy differs?
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(b) (10 Pts) (Hard problem) To have a fair comparison, we have to make sure that the powers
of the transmitted signals y;(¢) and ys(t), respectively, are equal. To adjust the power, assume
that z[n] =1 for all n, i.e., for —0co < n < 0o. Determine the relationship between a and b
such that for this particular z[n], the signals y;(¢) and ys(t) have the same power. (As seen in
class, this provides a worst case analysis.) Hint: By contrast to Part (a), this question studies
the power of the entire 51gnal rather than the energy of a smgle pulse
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Problem 3 (Sampling.) 30 Points
A real-valued data signal z(t) is known to be band-limited, i.e., X (jw) = 0, for |w| > W.

(a) (12 Pts) Suppose the signal z(t) is sampled non-uniformly using the impulse train q(t)
shown in Figure 2. Show that the spectrum of the sampled signal y;(t) = z(t)q:(¢) is

NGe) = = 3 (e THX(W- ). ®
k

=—00
Carefully justify every step in your derivation, including references to results from the tables.

ql@®

i H'

2T -7T/4 T/4 2T 9T/4 4T 17T/4 t

Figure 2: The sampling impulse train ¢;(t), wh =
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By

(b) (5 Pts) ls it possible to low-pass filter the signal y; () to get back the signal z(t)?

Answer: yes /@

Explanation: (Hint: Pick an example band-limited spectrum for xz(t), and sketch the resulting

spectrum of y1(t). Based on your plot, explain.)
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(¢) (5 Pts) Suppose the signal is sampled non-uniformly using the impulse train ¢a(t) shown in
Figure 3. The impulses are in the same locations as in Figure 2, but they have different weights
a and b (both real numbers). Find an expression for the spectrum Y3(jw) of the sampled signal

ya(t) = w(t)ga(t).
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Figure 3: The sampling impulse train ¢2(¢), where T = 7/W .
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(d) (5 Pts) For |w| < W, write out the spectrum

. _ Yi(jw) + jY2(jw), fw >0, :
Vi) = { Yiio) - ¥alio), ifw <0 ®

Select the real numbers a and b such that for 0 < w < W, it is true that Y (jw) = a3 (2+j(a+
b))X (jw). Hint: A complex number is zero if and only if its real part is zero and its imaginary
part is zero.
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(¢) (1 Pt) It can also be shown that with the choice of a and b as in Part (d), it is true that
Y(jw) = 5p(2 — j(a + b)) X (jw) for —W < w < 0. Hence, from Y (jw), one can determine
X(jw) using a simple filter. This means that non-uniform sampling using the sampling intervals
shown in Figure 2 (and in Figure 3) permits to perfectly reconstruct z(t) from samples. Give
an intuitive explanation why this makes sense. 7 wy 2 2W on Omtrage
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