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Problem 1
a) False. If X and YV are continuous-valued random variables, then

E(X+Y) = /_O;/_Z(Hy)fx,y(x,y)dxdy

/ . / Fxy (e, y)dyde + / y / Fxy (e, y)dady

/_ ¥ fx ()i + / uly (v)dy
= E(X)+ B(Y)

Hence, expectation is linear and do not depend on the independence of X and Y.

b) True.
Var(X +Y) = Var(X) + Var(Y) + 2Cov(X,Y)

If X and Y are uncorrelated, then Cov(X,Y) = 0.
¢) False. This is only true for independent discrete-valued random variables.

d) False.
my (1) = E(Y (1)) = F(Xt) =txmx

Clearly, the mean of {Y(¢)} is dependent on time. Therefore, {Y (¢)} is not strict sense stationary.

e) False. Consider this counterexample. Let’s say our experiment is two fair coin tosses. Let X be 1 if the first
toss is heads, 0 otherwise. Let Y be 1 if the second toss is heads, 0 otherwise. Let Z be 1 if the two tosses are
the same, 0 if they are different. Clearly, X, Y, and Z are pairwise independent.

If X, Y, and Z are all independent, then P(Z = 1|X = 1,Y = 1) should equal P(Z =1). P(Z=1|X=1,Y =1)
is easily seen to be 1, but P(Z = 1) = 1/2. Since the two are not equal, X, Y, and Z are not independent.

Problem 2
a) Sw(f) = No/2. Therefore,

E[W®)]?] = Ry (r)|r=0 = %am) — e

b) Since H(f) is a stable LTI system and the input {WW(¢)} is a WSS process, the output {Y(¢)} is also WSS.
Furthermore,
No

Sy(f) = [H()Sw () = (DS

)
Se () = (P = )

Taking the inverse Fourier transform,

Ry (1) = NoWsinc(2Wr)



Then

bl

E[lY(#)]*] = Ry (7)]|r=0 = NoWsinc(0) = NoW

d) Sampling the output {Y ()} at rate 1/7° = 2W samples per second means that we are looking at samples 1/2W
seconds apart. The time difference between any two samples of this discrete-time process {Y(nT)} = {Y[n]} is
k/2W where k is an integer. Therefore,

Ry1a1(k) = Ry (k/2W) = NoWsinc(k) = NoWd[k]

The process is white because its power-spectral density is flat. Furthermore, it is Gaussian since the samples are
from a continuous-time Gaussian process.

e) Now we are looking at samples 1/4W seconds apart. The time difference between any two samples is k/4W
where k is an integer. Therefore,

k
Ry (k) = Ry (k/4W) = NoWsinc(3)
f) Finding the optimal linear predictor consists of solving the Yule-Walker equations for the set of predictor

coefficients {a;}|'_,. Since we are only predicting the current sample from the previous sample, p is 1, which
means that there is only one coefficient a to solve for.

aRypp(1—1) = Rypr)(1)
_ Byw(D)

0 =

Ry[1(0)

At rate 2W, a = %ggg%% = 0. At rate 4W, a = %t/ﬁl = sinc(1/2) = 2/m. Tt is evident that using

DPCM for the 4W case is more beneficial than using PCM because consecutive samples are correlated. However,
using DPCM for the 2W case provides no benefits because consecutive samples are uncorrelated. In this case, we
cannot predict the value of the current sample from the value of the previous sample.

Problem 3
a) Here’s the picture of fx (z), the quantization levels, and the quantization regions.
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The signal power is
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Therefore,
2/3
SQNR = — =6
Q 1/9

b) The optimal lossless coder to minimize the average bit rate of the coded stream, assuming that we are coding
sample-by-sample, is a Huffman coder. To find the code, we need to calculate the probabilities of each quantized
value.

1 1 1 3
PQ(Xn)=%1) = P(Q(X”):£2)21*1+§*1*Z:§
. ) 1 11
PQ(Xp)=3) = PRXp) =&4)=-xls—-==
2 4 8
Here’s a possible Huffman tree.
0 &1:2 0
10 &3 0o, [
8
110 &5: L 0, !
L
11 g0 1
The minimum average bit rate is
- 3 3 1 1 15
R(Q(X,)) = g*(1)+g*(2)—|——*(3)+—*(3):g
= 1.875
Problem 4
a) Since s4(t) = —s3(t), the dimension of the signal space is 3. We will use the Gram-Schmidt procedure on

{si(t)}|2_, to construct an orthonormal basis for the set.

T T 4nt
2nt 1-— ==t 1
K, = / sin? idt = / i dt = =T
0 T 0 2 2

The energy of s1(¢) is



So the first basis signal is

it == 2ty

s1(t) and sa2(t) are orthogonal (s1(t) - s2(¢) = 0), hence

vt = 40— [t

The component of the projection of s3(t) on () is 0, but for the projection of s3(¢) on ¢1(t),

T2 [9  omt foT
53(t) : 1/)1(t) = T sin —dt = T_

ds(t) = ss(t) — \/j_Tl/)l(t)
Its energy is
Bay = loalt) = 20 0] sal0) - L n0)
= salt) 5200 ~ 22 (sa(0) - 1 () + T (s (0) - a0
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Then the third basis signal is

The decorrelator looks like this
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{V; = fOTY(t)d)i (t)dt}|2_, are sufficient statistics for optimal detection. Three sufficient statistics are needed
because there are three basis signals for the signal set.



b) Yes, the four components do provide sufficient information for optimal detection. The basis signals {¢;(¢) }?_,
were calculated from {s(t)}|:_,, hence we can find {Y; = Y (¢) - ¢;(t)} from {Y(¢) - sx(¢)}. Since the {Y;} are
sufficient statistics for optimal detection, it follows that {Y'(¢) - si(¢)} is as well.



