
Midterm — Oct. 12, 2007

EE122: Introduction to Communication Networks

Fall 2007

SOLUTIONS

Prof. Paxson
Department of Electrical Engineering and Computer Sciences

College of Engineering
University of California, Berkeley

Problem 1 2 3 4 5 6 7 8 Total

Mean Score 17.0 10.4 11.4 10.2 17.3 9.7 13.1 13.4 102.5
Max Points 20 15 20 20 20 15 20 20 150

High score: 140
90th percentile: 126
75th percentile: 116
Median score: 108.5
25th percentile: 89
Low score: 40

1. Alphabet soup.

For each of the concepts given below, list which of the following acronyms apply:

802.3, ARQ, CDN, CIDR, CNAME, CRC, CSMA, CSMA/CD, DF, FDMA, FTP, HTTP,
ICANN, IMAP, IPv4, IPv6, LAN, MIME, MTU, MX, Mbps, NIC, NRZ, NRZI, NS, PTR,
RFC, RIR, RTT, SMTP, SONET, TCP, TDMA, TLD, TTL, UDP, URI

Not all acronyms are used. Unless otherwise stated, there isone acronym per concept.
(1 point per item)

Mentioning any additional acronyms along with the correct one generally resulted in
no credit for the given item, except when the additional acronym also closely related
to the concept.

1



(a) Used to provide a web site’s content from a large number ofdistributed servers:CDN.
One common error was to list HTTP instead. However, HTTP does not by itself
entail “a large number of distributed servers.”

(b) A way of interpreting IP addresses as having an initial (variable-length) network prefix,
plus the remaining bits identifying a host within that network: CIDR

(c) An Internet standards document:RFC

(d) The IEEE standardization of Ethernet:802.3

(e) 2 types of layer-4 transport protocols:TCP, UDP. You needed to specify both to
get credit.

(f) A DNS resource record used to identify email servers associated with a domain:MX

(g) An application-layer protocol that uses an additional connection between the same
client and server for each data object transferred:FTP. Some put down HTTP in-
stead. However, only version 1.0 of HTTP uses a separate connection for each
object. HTTP 1.1 added persistent connections.

(h) A term referring to a host’s network adaptor:NIC . A common error was to list LAN
instead. That, however, refers to the entire local-area network, not particularly
to the host’s adaptor.

(i) 4 types of DNS resource records:NS, MX, PTR, CNAME . You needed to specify
3 of the 4 to get credit.

(j) The largest sized packet that can be sent across a link (ora network path) without re-
quiring fragmentation:MTU . Some instead listed DF. While the IPv4 DF header
flag is used to prohibit fragmentation, by itself it does not refer to the size of
packets that can be sent without fragmentation.

(k) The style of MAC (Media Access Control) protocol used by Ethernet:CSMA/CD. No
credit was given for instead (or also) mentioning CSMA, since a key facet of
Ethernet’s MAC protocol is its collision detection.

(l) A scheme for computing a checksum value over a block of data in order to detect bit
errors:CRC

(m) A standardized scheme for encoding different types of email (and Web) content:
MIME . A common error was to specify HTTP instead. However, HTTP is not
involved in email, and also by itself isn’t a scheme for encoding content, though
it includes mechanisms for specifying these.

(n) An entity responsible for allocating Internet address blocks for a large region:RIR
or ICANN . I was looking for RIR in particular, but ICANN—which ultimately
controls all address blocks, and allocates them to a given RIR for each large
region, was also a reasonable answer.

2



(o) The time it takes to send a packet to a destination and heara response back from it:
RTT

(p) The main protocol used to transmit email:SMTP. One error here was to list IMAP
instead. However, IMAP is only one of several protocols used to read email
once it has been transmitted; it’s not used to transmit the email. Another er-
ror was to give MIME, which concerns how mail is encoded, but not how it is
transmitted.

(q) The term for primary DNS zones such as.comor .uk : TLD . A common error was to
instead give NS. That term refers to a particular type of DNS Resource Record,
rather than the primary DNS zones.

(r) A counter in the IP header that is decreased at each hop; ifit reaches 0, the packet is
discarded (also refers to how long to keep a DNS response in a local cache):TTL

(s) A class of mechanisms used for transport protocols that achieve reliability by retrans-
mitting missing data. Particularly used in reference to simple reliable schemes such
as Stop-and-Wait:ARQ. Some put down TCP instead. TCP is one particular
transport protocol. The question is instead asking about the name of a set of
mechanisms used by a number of transport protocols, one of which is TCP
(though only partially, as we will see.

(t) A way of sharing a link’s capacity among a group of sendersin which each sender
is assigned its own frequency to use when transmitting, which it can use to transmit
whenever it pleases:FDMA

3



2. MAC Protocols.

For each of the following types of media access control protocols, place anX if the given
attribute applies to it. (15 points)

Attribute Ethernet Slotted Aloha Token Passing TDMA FDMA

Uses Collision Detection ✗ ✗

Uses Carrier Sense ✗

Uses Exponential Backoff ✗

A single node can potentially
use close to all of the capacity

✗ ✗ ✗

Nodes have to wait for it to be
their turn to send

✗ ✗

Operates efficiently when
many nodes all have data to
send

✗ ✗ ✗

Vulnerable to failure of a sin-
gle node

✗

Uses randomness to avoid
synchronization

✗ ✗

Scoring was +1 point for each box correctly checked, -1 point for each box incor-
rectly checked, and a minimum of 0 if the latter outweighed the former.

Common problems:

• While Slotted Aloha uses a form of backoff when it detects a collision, it is not
exponential (doesn’t back off further and further on each subsequent collision).

• Token passing allows a single node to potentially use close to all of the capacity,
since passing around the token occurs considerably more quickly than the time
it takes to transmit a large frame.

• Ethernet does not operate efficiently when many nodes all have data to send,
as these senders will very often generate collisions.

• Ethernet uses randomness during its exponential backoff procedure in order to
make it unlikely that nodes pick the same backoff interval

• With both token passing and TDMA, a node must wait until its designated turn
for transmitting. With FDMA, nodes do not need to wait, since they are free to
use their assigned frequency whenever they wish.

• Token passing operates efficiently when many nodes have data to send since
each transfer of the token to a new sender generally allows the sender to then
transmit and make effective use of the network.

4



• The phrase “avoid synchronization” refers to senders trying to send at the same
time. It does not refer to clock synchronization.

3. Multiple Data Transfers.

Using a Web browser, you visit the web site forwww.hamburger.com. The base HTML
page for the main pagewww.hamburger.com is 30,000 bits. Once the base HTML page
is fetched, it contains URL references for the following embedded images:

http://www.hamburger.com/burger banner.jpg 15,000 bits
http://www.hamburger.com/lettuce.jpg 5,000 bits
http://www.hamburger.com/mmm bacon.jpg 10,000 bits
http://www.hamburger.com/veggie.jpg 10,000 bits
http://www.hamburger.com/disclaimer.txt 5,000 bits
http://www.hamburger.com/royale with cheese.jpg 35,000 bits

Your Web browser uses the HTTP protocol to download the base page and the embedded
objects. Make the following assumptions:

• At most 10,000 bits of data fits into a single packet. You can ignore the overhead of
any headers or framing.

• You must first download the entire base page before you can start fetching the embed-
ded images.

• HTTP requests are 1,000 bits in size.

• Any new connection to a machine requires a connection-establishment handshake.

For this problem, you do not need to worry about closing connections, and you can
ignore the delay introduced in acknowledging the final data packet sent by the server
to your browser.

• All senders use windows of 20,000 bits.

• No packets are lost.

Note: many students found this problem difficult.

(a) For the initial transfer of the home page, how many RTTs are required, and what occurs
during each of them? (5 points)

Answer: 3 RTTs.

i. Establish the connection.
ii. Send over the request and receive 20,000 bits of the home page data in reply.

20,000 bits = two maximum-sized packets, as permitted by thesender’s win-
dow.

5



iii. Send an acknowledgment for this data, which then slidesthe window, and
receive the remaining 10,000 bits (one packet) in reply.

Common problems:

• An RTT reflects a round-trip of traffic, i.e., packets from one end to the
other and responses to those packets (either acknowledgments and/or
data) coming back. A number of answers instead counted each such ex-
change as two RTTs.

• Given that senders have windows allowing transfer of more than one
packet, the transfers do not proceed by Stop-and-Wait (one data packet
at a time).

• A number of answers had an RTT for just the initial request from the client
(plus and acknowledgment of it by the server), rather than the server reply-
ing to this request with the first 20,000 bits of data. As soon as the server
receives the request, it can send out data in response.

• Some answers neglected to include an RTT for the initial connection es-
tablishment.

• The problem states (and was further clarified during the exam) that the
question pertains to downloading of the base page only, not also the em-
bedded images.

(b) How quickly (in terms of RTTs) can your browser download the base page forwww.
hamburger.com and all embedded objects if the browser uses:

Note: if your answers in this part were incorrect but were consistent with your
answer for part (a), then you received credit if you reused the same logic (for
example, you did your computations assuming Stop-and-Go rather than slid-
ing window). However, this required that your reasoning remained consistent
through the problem.

i. One connection per item, with up to 4 concurrent connections. (5 points)

Answer: either 7 RTTs or 8 RTTs, depending on whether your browser
starts fetching royale with cheese.jpg immediately or only after the
first 4 retrievals.
A. It takes 3 RTTs to fetch the base HTML page, per the previousproblem.
B. It takes 2 RTTs to fetch each of the embedded images other than the last:

one RTT to establish a new connection and one to retrieve it, since it fits
within the sender’s window.

C. It takes 3 RTTs to fetch royale with cheese.jpg since it’s too big
for a single window.

6



D. The problem asks for how quickly the browser can fetch everything. To
do so, once it received the base page it would start off fetching royale
with cheese.jpg and three of the others. Once those others finished,
it would fetch the two remaining ones. While doing so,royale with
cheese.jpg would complete, and the two remaining ones. Thus, the
total time for the embedded images is 4 RTTs.

E. It’s reasonable to assume the browser wouldn’t necessarily figure out
it should start working on royale with cheese.jpg initially (the
browser likely doesn’t know its size, and therefore that it’s worth getting
an early start). In this case, it would take 5 RTTs to fetch theembedded
images: the first 4 concurrently (2 RTTs) plus then the last two (3 more
RTTs).

Common problems:
• The most important facet of this problem is that the answer reflects the

time taken by up to 4 connections executing at the same time.
• An incorrect assumption that because the images total 80,000 bits,

then they can fit into either 8 packets or (a bit better) 4 windows is
appropriate for using a pipelined connection, but not for concurrent
connections. The latter require their own connection establishment,
and cannot share space across multiple items (such as the 15,000 bit
item and the 5,000 bit item together fitting into 2 packets).

• Some answers overlooked that there could only be four simultaneous
connections, rather than all 6.

• Some answers overlooked that the question included the time to down-
load the base HTML page too.

• The term “concurrent connections” refers to multiple transport-level
(TCP) connections, not multiple requests within a single TCP connec-
tion.

• It’s important to recognize that one of the items (namely royale with
cheese.jpg) takes two RTTs to transfer its data.

ii. A single persistent, non-pipelined connection. (5 points)

Answer: 10 RTTs.
• Again it takes 3 RTTs to fetch the base HTML page.
• With a persistent, non-pipelined connection, the browser can only fetch

one item at a time, waiting to receive all of it before requesting another
item. However, these items donot require any further connection estab-
lishments.

7



• All of the embedded images exceptroyale with cheese.jpg can be
transferred in a single RTT, since they fit within the server’s sending win-
dow of 20,000 bits.

• royale with cheese.jpg takes 2 RTTs.
• Therefore the embedded images require 1+1+1+1+1+2 = 7 RTTs.

Common problems:
• Non-pipelined does not mean one packet per RTT; it means one re-

quest at a time. So while it is analogous to transport-level Stop-and-Go,
it still uses sliding window (up to 2 packets per RTT, in this case).

• Some partial credit was allowed if this problem was solved in a manner
consistent with a pipelined HTTP connection, and the next problem in
a manner consistent with a non-pipelined connection.

• When using a persistent connection, there is only a single RTT of con-
nection establishment overhead (at the beginning).

iii. A single pipelined connection. (5 points)
Answer: 7 RTTs.
• Again, 3 RTTs for the base HTML page.
• With pipelining, the browser can send over requests for all of the embed-

ded images at once.
• The server returns these requests at a rate of 20,000 bits/RTT, since that’s

its window size. In particular, with pipelining it can send data for multiple
replies in a single packet.

• Accordingly, the 80,000 bits’ worth of embedded images require 8 packets
= 4 windows, so 4 more RTTs to transfer.

Common problems:
• The base HTML page cannot be pipelined with any of the embedded

items since it must first be received in its entirety before the browser
knows what items to fetch.

• Similarly to the above problem, HTTP pipelining is analogous to Sliding
Window in terms that multiple messages are underway at one time.
Its use does not mean that the transport protocol (TCP) starts using
Sliding Window. In this whole problem (all four parts), the transport
protocol is always using Sliding Window (up to 2 packets per RTT).

4. Performance of reliable data transfer.

Consider two nodes,A andB. Suppose the network path fromA to B has a bandwidth of
5 KB/s (5,000 bytes per second) and a propagation time of 120 msec. The path in the reverse
direction, fromB to A, has a bandwidth of 10 KB/s and a propagation time of 80 msec.

8



Let data packets have a size (including all headers) of 500 bytes and acknowledgment packets
a size of 100 bytes.

Note: many students found this problem difficult.

(a) Give a numeric expression for the throughputA can achieve in transmitting toB using
Stop-and-Wait. You can treat a 500-byte data packet as transferring 500 bytes of useful
data (that is, ignore that it’s a bit less due to the headers).(5 points)

Answer:
The transmission time of a data packet fromA to B is (500 B)/(5 KB/s) = 100 msec.
The transmission time of an acknowledgment fromB to A is (100 B)/(10 KB/s) =
10 msec.
The total propagation time is 80+120 = 200 msec.
Thus an RTT for sending a data packet and receiving an acknowledgment for it is
200+100+10 = 310 msec.
With Stop-and-Wait, A sends one data packet per RTT, so the throughput it can
achieve is (500 B)/(310 msec) = 500/0.310 B/s (≈ 1613 B/s).

Common problems:

• Throughput refers to useful data sent over time. Acknowledgments are not
“useful data,” so their size does not figure into how much data is sent over
time. However, their propagation time and transmission time does, since
the arrival of acknowledgments governs when the sender can send new
data.

• Since throughput is computed over elapsed time, you need to figure in not
only the propagation time of the path but also the transmission time of both
the data packets and the acknowledgments.

• Another common error regarding the time interval was to consider only the
time elapsed in the forward direction. However, as mentioned above, since
the receipt of acknowledgments is required to continue sending data, the
time they take to come back also must be figured in.

• By definition, Stop-and-Wait entails sending just one data packet per
round-trip.

(b) Give a numeric expression for the size of the window, in terms of number of data
packets, thatA must use in order to transfer its data as fast as possible, ifA instead
uses Sliding Window. (5 points)

Answer: to go as fast as possible,A must use a window that is at least as large as
the bandwidth-delay product, which is 5 KB/s· 310 msec = 1,550 bytes.

9



The question asks for how many data packets, which is given by:
⌈

1550 B

500 B/pkt

⌉

= 4 pkts

where ⌈· · ·⌉ denotes the “ceiling” operator (round up to nearest integer).

Common problems:

• The problem called for computing the size of the window in terms of data
packets, not bytes.

• When computing the size in packets, you need to round up to ensure that
the window is large enough to completely fill the available capacity.

• It was not enough to simply mention the bandwidth-delay product; the prob-
lem asked for a numeric expression.

• The “delay” term in the bandwidth-delay product corresponds to how long
it takes to receive an acknowledgment for a full-sized data packet. Thus as
well as the round-trip propagation time, it must take into account the trans-
mission times for both a full-sized data packet and its acknowledgment.

• The “bandwidth” term in the bandwidth-delay product refers to the forward
path’s capacity, not the throughput achievable by Stop-and-Wait.

• The bandwidth in the reverse direction does not come into play unless it is
so small that the acknowledgments get spread out and they can’t slide the
window quickly enough (see part (d)).

• Note, if you miscomputed the RTT in part (a) but then used that value again
here in an otherwise correct fashion, you received full credit.

(c) What is the maximum rateA can achieve? (5 points)

Answer: when using a window greater or equal to the bandwidth-delay product,
a sender can achieve a rate—i.e., how fast it can transmit over time—equal to the
bandwidth of the path. (A minor consideration here is overhead due to packet
headers, but the problem specifically tells us to ignore that.)
Therefore, the window of 4 pkts suffices forA to achieve a rate of 5 KB/s.

Common problems:

• The problem asks for a rate. Thus, simply giving the bandwidth-delay prod-
uct (which is a size) does not suffice.

• Because the problem asks for the maximum rate, simply stating the window
size divided by the RTT was not enough for full credit. The point of the
problem is to recognize that the rate will be the full 5 KB/s.

10



(d) If the bandwidth of the path fromB to A drops to 100 bytes/sec, canA still achieve
this rate? If so, roughly how much smaller or bigger is the newwindow size? If not,
what is the new limit on the rateA can achieve? (5 points)

Answer: this question is subtle, and goes to the heart of justhow sliding window
works.
When the bandwidth in the reverse direction drops so drastically, not only does
the transmission time of the acknowledgments go way up (to 1000 msec), but
even more critically, the window can only advance once per 1000 msec, since
that’s the minimum spacing between two acknowledgments. Therefore A can
only send one data packet per second, and has its maximum ratereduced to
500 B / 1000 msec = 500 B/s.

Common problems:

• The key to this problem is recognizing that it is not simply a matter of com-
puting the larger RTT (and thus increased window size). However, solu-
tions that only did this latter received partial credit if correctly done. This
included needing to indicate the new window size.

• As asked for in the problem, solutions that stated A could not still achieve
the same rate needed to also indicate what would be the new limit on the
rate.

• Some misread this problem as asking if the rate would change given no
change in the window size. This is clearly not the intent of the problem,
since it asks for how the window would change if A can still go as fast, but
received partial credit if correctly analyzed given that misinterpretation.

• Very few students got this problem fully correct.

5. Encoding.

Consider a link which has two levels,hi or lo. We wish to transmit the bit sequence1110
across this link. Assume that the bit we sent most recently was 0, and when we finished
transmitting it the link was at thelo level.

(a) For the following patterns of signals, indicate whetherthey correspond to NRZ, NRZI,
Manchester, or 4-bit/5-bit encoding. (2 points each)

i. hi, lo, hi, hi, hi.
Answer: this must be a 4-bit/5-bit encoding, since that’s the only one of the
encodings that requires 5 signal levels to represent 4 bits.

ii. hi, hi, hi, lo.

Answer: NRZ, which represents a 1-bit with ahi signal level and a 0-bit with
a lo signal.

11



iii. hi, lo, hi, lo, hi, lo, lo, hi.

Answer: Manchester, the only one of the 4 encoding schemes that requires two
signal levels per bit. (In particular, it represents a 1-bit as ahi-lo transition
and a 0-bit as alo-hi transition.

iv. hi, lo, hi, hi.

Answer: NRZI, which represents a 1-bit as a transition and a 0-bit as no
transition. Recall that the problem states that the link wasleft as lo, so we
have a transition (tohi), another (to lo), another (to hi), and then no transition
(so remaining athi).

Most students did fine on all of these.

(b) Consider an alternate encoding scheme that represents a1 bit using a single transition
and a0 bit using two transitions.

i. Write down thehi/lo representation of1110. (4 points)

Answer: with this scheme, we need<one transition> followed by <one
transition> followed by <one transition> followed by <two transitions>.
Since the signal starts oflo, the encoding would behi (one transition), lo (one
transition), hi (one transition), lo, hi (two transitions).
There are other ways to interpret the encoding scheme. For example, if we
consider that the signal will be inspected two times per cycle (in order to see
whether the first half of the cycle has a transition, and then whether the sec-
ond half does), then we might express the encoding as:hi+hi, lo+lo, hi+hi,
lo+hi.

Common problems:
• Encodings that exhibited a single erroneous signal level, or included

an unnecessary transition, received half credit. Those for which I was
unable to determine how they related to one-versus-two transitions re-
ceived one point.

ii. What advantage does this scheme offer over NRZI? (4 points)

Answer: NRZI has the problem that it does not exhibit any transitions in
the presence of a string of 0-bits, which can then lead to problems with clock
recovery. This scheme, however, always includes transitions, and so avoids
this problem.

Common problems:
• The key for this problem was mentioning clock recovery, or, equiva-

lently, avoiding clock drift.
• Some answers stated that this encoding allows detection of errors.

However, clock recovery is about avoiding bit slips, not detecting them.

12



• Answers expressed in terms of idle time, or just “handling” of long
strings of zeroes, received only partial credit.

• Answers that stated the encoding provides transitions for long strings
of zeroes, without explaining why that’s an advantage (clock recovery),
received 3 points.

• Some answers talked about long strings of both zeroes and ones. For
NRZI, only long strings of zeroes are problematic.

iii. What disadvantage does this scheme have compared to NRZI? (4 points)

Answer: this scheme can require two signals to encode a single bit (neces-
sary for representing two transitions, and thus a 0-bit). Therefore, like with
Manchester, this scheme requires a higher clock rate, or, equivalently, results
in lower efficiency.
I allowed full credit for other disadvantages when adequately supported.
These include: (1) ambiguity in distinguishing an encoded zero from two en-
coded ones (which might or might not be the case, depending onthe clock
framing), and (2) the requirement to use a fluctuating clock rate (which the
encoding might need, depending on how one interprets what itmeans to ex-
hibit one versus two transitions).

Common problems:
• Simply stating that the encoding is more complicated to implement was

worth partial credit.

13



6. Bridges / Switches.

Consider the network of learning bridges (switches) shown in the following figure:

Show the forwarding table in each of the bridges after the following transmissions (which
occur in the given order), assuming each table starts out empty:

(a) C sends to A

(b) F sends to E

(c) E sends to F

(d) D sends to B

Give a table for each bridge, each with two columns: destination and port number, showing
how the bridge would forward traffic. (15 points)

14



Answer:

When C sends to A, B1 receives the frame on its port #1, and B2 onits port #2. Recall
that bridges (and switches) learn the direction towards thesource of a frame rather
than its destination. So after seeing this frame, their forwarding tables look like:

Bridge B1
Destination Port number

C 1

Bridge B2
Destination Port number

C 2

In addition, upon receiving the frame, because neither has an entry in its forwarding
table for the destination A, they both flood the frame, with B1forwarding it out its port
#2, and B2 forwarding it out its ports #1 and #3.

When F sends to E, B2 sees the frame on its port #3. It has no forwarding entry for E,
so it floods the frame out its ports #1 and #2. Because of this latter forwarding, B1 also
sees the frame, and the resulting tables look like:

Bridge B1
Destination Port number

C 1
F 1

Bridge B2
Destination Port number

C 2
F 3

Next comes the frame from E to F. B2 sees this on its port #1. However, in this case it
does have a forwarding entry for the destination. Therefore it forwards the frame only
to its port #3, and not its port #2. Consequently, B1 doesnot see the frame and thus
won’t learn the direction to forward towards E. The tables now look like:

Bridge B1
Destination Port number

C 1
F 1

Bridge B2
Destination Port number

C 2
F 3
E 1

Finally, D sends to B. This frame shows up on B1’s port #2. It has no entry for D, so it
floods the frame, which simply means it forwards it out its port #1. B2 therefore sees
the frame as appearing on its port #2, and learns that that is the port to use to forward
towards D.

The final tables therefore look like:

15



Bridge B1
Destination Port number

C 1
F 1
D 2

Bridge B2
Destination Port number

C 2
F 3
E 1
D 2

Scoring was: +2 for each correct table entry, except B2’s entry for D was worth +3. -1
for each incorrect table entry.

Common problems:

• B1 does not learn about destination E, since B2 already has a forwarding entry
for F, and therefore doesn’t flood the frame with source MAC address E onto
the link it shares with B1.

• If a solution appeared to make more sense with the tables for B1 and B2
swapped, then it was graded such, with -2 deducted for the error.

• Brute-forcing the entire table (filling it for every destination) was worth 5 total
points.

• Some answers overlooked that a bridge floods any frame for which it doesn’t
have a forwarding entry.

• Some answers were in terms of bridges learning destination MAC addresses
rather than sources. This received little credit, due to the circularity it requires.

• Any frame showing up on a link attached to a bridge gets learned. Thus, the
frame from D to B gets learned by both B1 and B2, and in fact B2 will flood the
frame out ports #1 and #3, since it doesn’t have a forwarding entry for B.

• Port numbers are relative to each bridge. For example, C is on port 1 for B1
but port 2 for B2.

• Bridges don’t learn about each other during regular forwarding. (They do when
executing the Spanning Tree algorithm, but that’s not included in this problem.)

• Entries in forwarding tables simply list MAC addresses and their associated
ports to use in forwarding. They do not list source/destination pairs, such as
C → A.

• Similarly, the ports in forwarding tables are simply the ones associated with
forwarding towards the given MAC address. Bridges do not learn pairs of ports
associated with where a frame came from and where it goes to.

16



7. Error detection.

Consider the following topology, where a node labeled withN denotes an end system,H
denotes a hub,Sdenotes a switch andR denotes a router:

All links are Ethernet.

SupposeN1 uses TCP to send a 1 KB message toN5. The TCP connection has already been
established, so this message is sent in a single packet.

(a) When the frame holding the packet arrives atN5: (8 points total)

i. Does it have the same Ethernet checksum as the frame holding the packet had
whenN1 sent it? If not, why not?

Answer: the Ethernet MAC addresses will be different at N5 than at N1. In
particular, at N1 the source MAC address will be N1’s and the destination
MAC address will be R1’s; while at N5, the source MAC address will be R2’s
and the destination MAC address will be N5’s. Because the Ethernet check-
sum covers the MAC addresses (and also the IP header, which changes too, as
discussed below), it will bedifferent.
Another valid answer was to observe that elements of the IP header will have
changed (see next problem part), so that will entail the Ethernet checksum
changing too.
This part of the problem was worth 3 points.

Common problems:

17



• Simply stating that the checksum would be different without explaining
why was worth 1 point.

• There was some confusion about the Ethernet CRC versus the term
“checksum.” The CRC is one type of checksum.

ii. Does it have the same IP checksum as the original did? If not, why not?

Answer: the IP checksum covers the IP header. While most of the IP header
fields stay the same (including the source and destination IPaddresses), the
TTL is decremented at each hop (once at R1 and once at R2). Eachrouter
as it decrements it also recomputes the IP checksum to match the new header
contents. Thus, the IP checksum at N5 will again bedifferent from that in the
packet when sent by N1.
This part of the problem was worth 3 points.

iii. Does it have the same TCP checksum as the original did? Ifnot, why not?

Answer: the TCP checksum covers the TCP header and the application pay-
load (as well as a few fields in the IP header, which we haven’t discussed yet;
but not the TTL or IP checksum). None of these value changes, so the TCP
checksum will be the same at N5 as it was at N1.
This part of the problem was worth 2 points.

(b) Suppose whenH1 processes the frame it introduces a single bit error. At which nodes
(i.e., any of the end systems, hubs, switches, or routers) will the errored packet appear?
Here, “appear” means the frame arrives at the node’s adapter, whether or not the adapter
will then accept the frame. (3 points)

Answer: the Ethernet CRC checksum will detect any single-bit errors, so the dam-
age caused by H1 will cause the frame to be discarded by any recipient after it
verifies the checksum. However, the damaged frame will stillappear at nodes H2,
R1, and N3. (It appears at N3 because H2 will forward it even though it is errored,
because H2 operates at layer 1 rather than layer 2.) It willnot appear in its er-
rored form at N2, since hubs do not resend frames onto the samesegment as that
from which they received them.
Since the CRC checksum fails, R1 will not further process theframe, and in par-
ticular will not forward the encapsulated packet onto R2.

Common problems:

• Simply stating that the errored packet would appear at R1 was worth
2 points. For a full 3 points, you needed to include all of the nodes, i.e.,
also H2 and N3. However, if you just included N3, I allowed credit, since
H2 is implicit in N3.

• The errored packet will not appear at N2. Hubs do not rebroadcast packets
onto the same segment as that from which they received them.

18



• The CRC error will already be caught at R1, not only by S1. This is be-
cause R1 needs to receive the Ethernet frame and decapsulate the embed-
ded IP packet in order to do its processing. Doing so necessarily entails
validating the Ethernet checksum.

(c) Suppose instead that afterN1’s kernel constructs the TCP header, but before it con-
structs the IP header, a single bit in the 1 KB message gets flipped in error. At which
nodes will the errored packet appear? (3 points)

Answer: the error in the application data will not be caught until N5 validates
the TCP checksum. (In particular, it will not be caught by the Ethernet CRC
checksum because when N1 sends the Ethernet frame it will compute the CRC
over the already-corrupted message.)
The errored packet thus appears at every node in the diagram except N6 (being
a router, R2 does not flood traffic, and so will only forward thepacket to S1). It
was optional to state that it “appears” at N1, since indeed the errored packet does
show up there.

Common problems:

• As in the previous part of this problem, stating that the packet would appear
at N5 was worth 2 points. For the full 3 points, you needed to state that it
would appear at all the other nodes (or close; for example, omitting N4 was
okay) except for N6.

(d) Suppose instead that afterN1’s kernel constructs both the TCP and IP headers, but
before it constructs the Ethernet header and trailer, a single bit in the IP header gets
flipped in error. At which nodes will the errored packet appear? (3 points)

Answer: the error in the IP header will be caught when R1 validates the IP check-
sum after receiving the packet, so the damaged packet will show up at R1, N2, H1,
H2, and N3. R1 will not forward it further, however.
Again, the packet will have a valid Ethernet CRC, though in this case that won’t
make a difference, other than if it had a bad CRC, then R1 woulddiscard it a bit
earlier in its processing of the incoming packet.

Common problems:

• As above, stating that it appears at R1 was good for 2 points; 3 points
required stating nearly all of the other nodes, too.

(e) For this last case (N1’s kernel processing flips a single bit in the IP header), suppose
that in addition whenH1 processes the frame it also flips a single bit in the IP header.
Under what circumstances, if any, can the packet arrive atN5? (3 points)

Answer: the packet cannot arrive at N5. The reason is that if H1 flips a single bit,
that will invalidate the Ethernet CRC, so R1 will discard the frame upon receipt.

19



(Recall that until H1 receives the frame, it has a valid Ethernet CRC, since the
Ethernet header and trailer were constructedafter the first bit error was caused
in the IP header.)
I allowed 2 points for answers that overlooked this issue andfocused on the ques-
tion of what sort of second bit errors would evade detection by the IP header
checksum. One form is an error that inverts thesame bit as was previously flipped,
thus inadvertently undoing the original damage, and makingthe IP header check-
sum valid again. Another form of error would be one of the types of two-bit errors
that the IP header checksum is too weak to detect, such as the same bit position in
two separate 16-bit words.

Common problems:

• Neither the Ethernet CRC nor the Internet checksum provide any form of
error correction, nor do they use parity.

8. Framing. In networking, being able to determine the beginning and ending of a message is
termedframing. Framing issues come up at both lower layers of the networking stack and
higher layers.

(a) One style of framing is to precede a message with acount of its length. (4 points)

i. When using counts for link-layer framing, what problem can arise?

Answer: if the count becomes corrupted, then not only does the current frame
get misrecovered, but ensuing frames too: the receiver willlocate an incorrect
length count for the next frame, and thus for the frame after it, and so on.
Another valid answer was that the formatting of the length field (for example,
if it is restricted to a certain number of bits) can impose limits on the size of
link-layer frames.

Common problems:
• Simply stating that errors can occur was worth 1 point.
• Stating that the length might exceed what the physical medium sup-

ports was worth 1 point, since this problem should not arise in practice.
ii. When using this style to send application-layer messages over TCP, does this prob-

lem still arise? Why or why not?

Answer: because TCP provides reliable delivery, this problem doesnot arise
for framing application-layer messages.
It sufficed to mention that TCP protects the application-layer data (not just
its header) with a checksum.

Common problems:

20



• Note that the question is about the framing of application-layer mes-
sages. These use the (reliable) service provided by TCP. Some an-
swers instead discussed what issues arise for TCP’s own internal fram-
ing (which relies on IP’s per-packet framing).

• Some interpreted the question as asking whether such a problem oc-
curring at the link-layer would cause trouble for TCP too. If the expla-
nation given was correct, this was given half credit.

• Stating that a corruption might occur that happens to pass TCP’s
checksum was worth 1 point, since this is unlikely to occur in practice.

(b) Another style of framing is to use asentinel value. (6 points)

i. When using sentinels for link-layer framing, what problem can arise?

Answer: the value used for the sentinel might appear in the frame’s data and
become confused with the indicator of the end of the frame.

Common problems:
• Stating that the sentinel could become corrupted and thus missed was

worth 1 point, as it doesn’t go to the heart of the general issue with
using sentinels.

ii. Briefly describe a solution for this problem.

Answer: some form of escaping needs to be used in order to tell embedded
instances of the sentinel value from the true instance that comes at the end of
the frame.
Another valid answer was to discuss use of encodings that have unused values
(such as 4-bit/5-bit); one of the otherwise unused values can then serve as the
sentinel value.

Common problems:
• Simply giving a specific example of an escaping scheme without iden-

tifying the general concept of escaping was worth 1 point.
iii. When using this style to send application-layer messages over TCP, does this prob-

lem still arise? Why or why not?

Answer: the problem does arise, since TCP provides a pure “byte stream”
to the application layer. This service does not include any built-in form of
escaping or unused values.

Common problems:
• Answers stating that TCP delivers packets that the application still

needs to reassemble received half credit, since TCP instead delivers
a byte stream (no packet boundaries), though the application has to
recover its message framing from the byte stream by itself.

21



• The answer needed to be in terms of application-layer messages, so
comments such as “use unmapped 4-bit/5-bit encoding values for the
sentinel” are inapplicable.

(c) Consider internetwork-layer datagrams sent using IP. (6 points)

i. What style of framing does IP use for the datagrams it transmits?

Answer: the IP header includes acount reflecting the length of the datagram.
Another valid answer was to discuss the framing IP uses for fragmentation.

ii. What solution, if any, does it use to address the problem you identified above that
can arise for this style?

Answer: IP protects the integrity of its header using a checksum. Thus, if a
length value becomes corrupted, it knows to discard the packet.

Common problems:
• IP’s checksum is not a CRC.

iii. How does a host that receives an IP datagram know what type of transport protocol
information is inside the datagram?

Answer: the IP header includes aprotocol field that codifies what type of
transport protocol header follows the IP header.

Common problems:
• The header field is not the “Type of Service” field.

(d) Application-layer protocols are free to use a wide rangeof framing techniques.
(4 points)

i. What sort of framing does SMTP use to figure out where an email message being
transferred ends?

Answer: SMTP uses asentinel in the form of a line consisting of a single
period (“.”)

ii. How does FTP indicate when it has finished transferring a file?

Answer: FTP closes the data connection to indicate it is donewith the transfer.
Another valid answer was to note that the FTP server will return a status
message.

Common problems:
• Since FTP’s termination is somewhat atypical, it did not suffice to sim-

ply state that it uses a sentinel.
• While FTP does state the length of the file when beginning a transfer (if

known), this is not used for its framing, and occurs prior to the transfer,
and thus is not the same as the status message

22



iii. What sort of framing does HTTP use for header information in requests and re-
sponses?

Answer: HTTP uses sentinels to frame its header information. It marks the
end of each header using a CRLF, and the end of all the headers by an empty
line terminated by a CRLF.

Common problems:
• It was not sufficient to simply give the syntax of a GET request or a

status reply, since the problem asked about header information.
iv. Give an example of a type of framing HTTP uses for figuring out where anitem

being transferred ends. (Here an “item” refers to the objectreturned in response to
aGET request, rather than the headers returned by the server.)

Answer: HTTP can use a length field (theContent-Length header, or for
“chunking”), or a sentinel (the server closing the connection after transferring
the item, for non-persistent connections).

Common problems:
• The problem specifically asks about items rather than headers. The

end of items are not framed using CRLF.
• While items that happen to be HTML documents will tend to end with
</HTML>, the presence of this token is not used by HTTP for its framing
(and can’t be, because items might be of some type other than HTML).

23


