UNIVERSITY OF CALIFORNIA

College of Engineering Department of Electrical Engineering and Computer Sciences

EECS 130 Fall 2006 Professor Ali Javey

Midterm I

- 1. Closed book. One sheet of notes is allowed.
- 2. Show all your work in order to receive partial credit.
- 3. Include correct units when appropriate.
- 4. Make sure everything is on the exam papers. Work on additional papers will *NOT* be accepted.
- 5. There are a total of 10 pages of this exam including this page. Make sure you have them all.

Problem 1	30
Problem 2	15 & 5 extra credit
Problem 3	28
Problem 4	27
Total	100

Physical Constants

Electronic charge	q	$1.602 \times 10^{-19} \mathrm{C}$
Permittivity of vacuum	\mathcal{E}_0	$8.845 \times 10^{-14} \mathrm{F cm^{-1}}$
Relative permittivity of silicon	$\mathcal{E}_{\mathrm{Si}}/\mathcal{E}_{\mathrm{0}}$	11.8
Boltzmann's constant	k	$8.617 \times 10^{-5} \text{ eV/ K or}$
		$1.38 \times 10^{-23} \text{ J K}^{-1}$
Thermal voltage at $T = 300 \text{K}$	kT/q	0.026 V
Effective density of states	N_c	$2.8 \times 10^{19} \text{ cm}^{-3}$
Effective density of states	$N_{\rm v}$	$1.04 \times 10^{19} \text{ cm}^{-3}$
Silicon Band Gap	E_G	1.12 eV
Intrinsic Carrier Concentration in Si at 300K	n_i	10^{10}cm^{-3}

1.	Carriers	Concentrations	[30	pts]	
----	----------	----------------	-----	------	--

This problem concerns a specimen of gallium arsenide, GaAs, which has $2x10^{17}$ cm⁻³ donors and an unknown number of acceptors. A measurement is made on the specimen and it is found that it is p-type with an equilibrium hole concentration, p_0 , of 5×10^{17} cm⁻³.

At room temperature in GaAs, the intrinsic carrier concentration, n_i , is 10^7 cm $^{-3}$, the hole mobility, μ_h , is 300 cm 2 /V-s, and the electron mobility, μ_e , is 4000 cm 2 /V-s. The minority carrier lifetime, t_{min} , is 10^{-9} s.

a) [6 pts] What is the net acceptor concentration, N	$I_A (= N_a - N_d)$, in this s	ample, and
what is the total acceptor concentration, N_a ?		

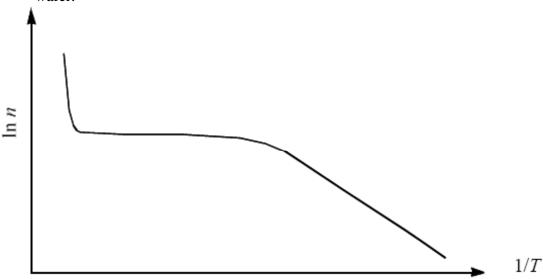
$$N_A = \underline{\hspace{1cm}} cm^{-3}$$

$$N_a = \underline{\qquad \qquad cm^{-3}}$$

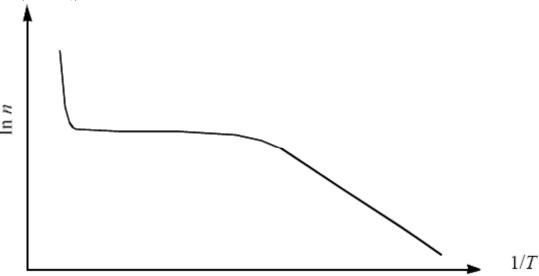
b) [6 pts] What is the equilibrium electron concentration, n_o, in this sample at room temperature?

$$n_0 =$$
_____cm⁻³

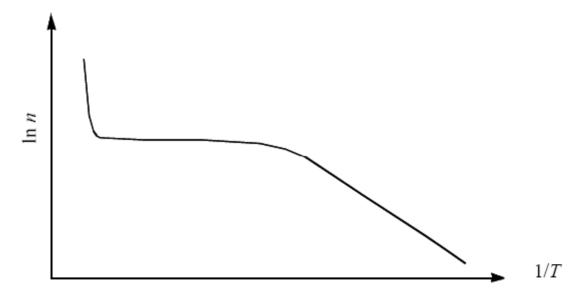
c) [6 pts] Calculate $E_F - E_i$ in this sample at room temperature.

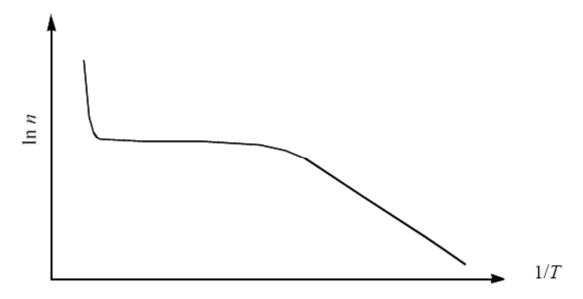

$$E_F - E_i = \underline{\hspace{1cm}} eV$$

ıt
m
on ns,
1 ⁻³
n ⁻³

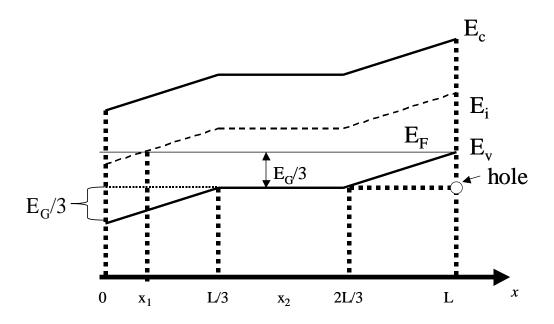

2. Temperature Dependence of Carrier Concentrations and Mobility [15 pts]

A silicon wafer is moderately doped with arsenic. The plots in parts (a)-(c) show the relationship between ln(n) and 1/T for this Si wafer, where n is the electron density in the conduction band and T is the temperature. In each case, clearly mark any pertinent shift in the curve and/or the slopes of the two non-flat regions as various properties of the semiconductor is changed.


a) [5 pts] Draw a second curve that would correspond to an intrinsic (undoped) Si wafer.


b) [5 pts] Draw a second curve that would correspond to using a Ge ($E_g \sim 0.67$) wafer with the same dopant density instead of a Si ($E_g \sim 1.1$) wafer. Assume the same ($E_D - E_C$).

c) [5 pts] Draw a second curve that would correspond to another Si wafer, but doped with a different donor such that $(E_D - E_C)_{NEW_DONER} = 4 \text{ x } ((E_D - E_C)_{As}$, where E_D is the donor energy level.



d) [$5pts\ extra\ credit$] Draw a second curves that would correspond to a heavily doped Si wafer. Hint: when doping density is high, the impurity energy level splits into a band of available states due to Pauli exclusion principle. This impurity band crosses E_c .

3. Band Model [28 pts]

A silicon device maintained at 300 K is characterized by the following band diagram. Use the cited energy band diagram in answering parts (a)-(e)

(a) [8 pts] Sketch the electric field inside the semiconductor.

(b) [5 pts] Do equilibrium conditions prevail (yes, no, or cannot determine)?

(c) [5 pts] Is the semiconductor degenerate at any point? If so, specify one point where this is the case.

(d) [5 pts] What is the electron current density (J_N) flowing at $x = x_1$?

(e) [5 pts] What is the kinetic energy of the hole shown in the diagram?

4. [27 pts] Assume a Si PN junction with the following dopant density profiles for the two segments:

N	P
$N_{\rm D} = 2 \times 10^{16} {\rm cm}^{-3}$	$N_{\rm A} = 1 \times 10^{17} {\rm cm}^{-3}$
$N_{\rm A} = 1 \times 10^{16} {\rm cm}^{-3}$	$N_{\rm D} = 1 \times 10^{13} {\rm cm}^{-3}$

a) [6 pts] Find V_{bi} .

$$V_{bi}$$
= _____V

b) [7 pts] Draw a band diagram for the structure with a forward bias of V_A =0.5 V. Label V_A , V_{bi} , E_v , E_c , and Fermi (or quasi-Fermi) levels.

c) [4 pts] For part b, using arrows, indicate direction of $I_{n,diff}$, $I_{p,drift}$, I_{n} , and I_{total} (Redraw the band diagrams from b here).

d) [10 pts] So far, we have been assuming that there is no series resistance (and therefore, no potential drop) in the neutral P and N regions of our diodes. However, when lightly doped (~<5e16cm⁻³), the resistivity of the P and N type regions are often high, leading to series resistance or potential drop in the P and N regions under an applied voltage. Draw a band diagram for this PN junction in equilibrium and then under forward bias, this time including the effect of the series resistance (qualitatively) of the N segment. Hint: assume the series resistance is constant throughout the N segment.