UNIVERSITY OF CALIFORNIA, BERKELEY

College of Engineering

Department of Electrical Engineering and Computer Sciences

EE 130: IC Devices

FINAL EXAMINATION

Spring 2003

NAME:			
	Last	First	Signature
STUDENT ID#:		E-MAIL:	

INSTRUCTIONS:

- 1. Use the values of physical constant provided below.
- SHOW YOUR WORK. (Make your methods clear to the grader!)
- 3. Clearly mark (underline or box) numeric answers. Specify the units on answers whenever appropriate.

Physical Constants Symbol Description Value 1.6x10⁻¹⁹ C electronic charge q 9.1x10⁻³¹ kg electron rest mass m_{σ} thermal voltage at 300K kT/q 0.026 V k 8.62x10⁻⁵ eV/K Boltzmann constant $(kT/q) \ln(10) = 0.060 \text{ V at } T = 300 \text{K}$

Properties of SiO₂ at 300K Value Symbol Description band gap E_g 9 eV ϵ_{SiO2} 3.45x10⁻¹³ F/cm permittivity 0.95 V electron affinity XSiO2

Symbol Value Description 1.12 eV band gap $10^{10}\,\mathrm{cm}^{-3}$ intrinsic carrier density n; permittivity 1.0x10⁻¹² F/cm εsi 4.03 V electron affinity XSi

Properties of Silicon at 300K

Electron and Hole Mobilities in Silicon at 300K

Problem 1: Semiconductor Fundamentals [30 points]

Consider the following uniformly doped n-type \overrightarrow{Si} sample of length 100 µm, maintained at T = 300K:

Light incident on the surface is absorbed at x = 0, resulting in $\Delta p_{n0} = 10^8/\text{cm}^3$ excess holes at x = 0. (The generation rate for x > 0 is zero.)

a) Describe the carrier actions (drift, diffusion, recombination-generation) in this sample. [5 pts]

- **b)** i) Write a differential equation (simplest form possible) for the excess hole concentration Δp_n , for x > 0. [5 pts]
 - ii) What is the general solution for this differential equation? [2 pts]
 - iii) What boundary conditions must $\Delta p_n(x)$ satisfy? [2 pts]
- iv) Solve for $\Delta p_n(x)$ and sketch it accurately on the axes provided below. Indicate the maximum value, and the point at which $\Delta p_n(x)$ falls to 1/e of the maximum value. [3 pts] $\Delta p_n(x)$ (cm⁻³)

c) Draw the high-band diagram for this sample, indicating the positions of the quasi-Fermi levels for electrons and holes (F_N and F_P , respectively) relative to the intrinsic Fermi Level E_i . [5 pts]
d) Do low-level injection conditions prevail throughout this sample? Justify your answer. [2 pts]
e) Do equilibrium conditions prevail throughout this sample? Justify your answer. [2 pts]
f) Estimate the resistivity of this sample. [4 pts]

Problem 2: Metal-Semiconductor Contact [30 points]

The following is the equilibrium (T = 300K) energy-band diagram for an ideal metal-semiconductor contact:

a) Label the Schottky barrier height (ϕ_B) and built-in voltage (V_{bi}) on the band diagram above. Calculate the values of ϕ_B and V_{bi} . [6 pts]

- b) Is this a rectifying or ohmic contact? Explain why. [3 pts]
- c) What does qV_{bi} represent? (Why is there a built-in voltage?) [2 pts]
- d) Sketch the energy-band diagram for this M-S contact with 0.3 V forward bias applied ($V_A = 0.3 \text{ V}$). Indicate qV_A on your diagram. [5 pts]

e) Explain how the doping concentration in the silicon can be determined from capacitance measurements. [8 pts]
f) Sketch the equilibrium energy-band diagram for a metal (ϕ_M = 4.8 eV) contact of degenerately doped n-type
silicon. Why is this practically an ohmic contact? [6 pts]

Problem 3: pn Junction Diode [40 points]

A pn diode is formed by introducing boron into the surface region of a Si sample uniformly doped with phosphorus:

schematic cross-section of diode

a) Draw the equilibrium (T = 300K) energy-band diagram for this diode. Indicate the position of $E_{\rm F}$ relative to $E_{\rm i}$ in the quasi-neutral regions. (Numerical values are required.) Label the depletion width W and built-in potential $V_{\rm bi}$, and calculate their values. [15 pts]

b) Sketch the energy-band diagram for this diode with a large reverse bias applied. Use this diagram to explain how reverse-bias breakdown occurs. [5 pts]

Problem 5: Metal-Oxide-Semiconductor Capacitor [30 pts]

a) Was this *C-V* characteristic measured using a high-frequency ac signal, or low-frequency ac signal? How do you know? [3 pts]

b) Is the Si substrate n-type, or p-type? Justify your answer. [3 pts]

c) Is the poly-Si gate doped heavily in n-type or p-type? Justify your answer. [3 pts]

d) Sketch the MOS energy-band diagram corresponding to the gate bias at point A on the C-V curve. [6 pts]

Problem 6: MOS Field-Effect Transistor [40 points]

- a) In a certain CMOS technology, the electrical oxide thickness it $T_{\rm oxe} = 3.45$ nm, the body-effect factor is m = 1.2, and the absolute value of the threshold voltage of a long-channel MOSFET is $|V_{\rm T}| = 0.4$ V.
 - i) Sketch the $I_{\rm D}$ vs. $V_{\rm DS}$ characteristic for an n-channel MOSFET of channel width $W=1~\mu{\rm m}$, channel length $L=1~\mu{\rm m}$, and gate bias $V_{\rm GS}=1.5~{\rm V}$. Indicate the values of $V_{\rm Dsat}$ and $I_{\rm Dsat}$. [10 pts]

ii) For what channel lengths will the effect of velocity saturation be significant (*i.e.* resulting in a reduction in I_{Dsat} by more than a factor of 2)? $v_{sat} = 8 \times 10^6$ cm/s. [5 pts]

	MOSFET drain current (I_{DS}) equation account for? (Why is it needed in order trent flowing in a MOSFET?) [4 pts]	to
	$V_{\rm T}$ V_{\rm	
iii) How does the leakage curren	t of a MOSFET change with increasing temperature? Justify your answer. [4 pts]	

c) Indicate in the table below (by checking the appropriate box for each line) the effect of **decreasing the gate** oxide **thickness** (T_{oxe}) on the performance parameters of an n-channel MOSFET. Provide brief justification for each of your answers. [12 pts]

	1		1	
MOSFET parameter	increases	decreases	remains	
_			the same	
Transconductance				
(g_m)				
(8111)				
Body effect parameter				
(γ)				
l				
Subthreshold swing				
(S)				