EE130, Spring 1993 Midterm #2 Professor N. Cheung

Problem #1 (18 points)

The small-signal model of a pn diode is shown below together with the corresponding device structure parameters.

<u>Diagram of pn diode here</u> where $g_d = \text{small-signal conductance}$

 C_d = small-signal diffusion capacitance

 C_j = small-signal junction capacitance

Indicate in the table below how the small-signal parameters will change when the (i) quasi-neutral widths x_p and x_n , (ii) minority carrier lifetimes T_n and T_p and (iii) doping concentration N_a and N_d increases. Use up-arrow, down-arrow, or 0 to denote an increase, decrease, or no change respectively. [In case you want to elaborate some answers, comment briefly at the bottom of this page.]

Diagram of Table here

Problem #2 (20 points total)

The cross-section of a n-channel JFET with the gate connected to terminal 2 is shown below. V_2 is negative.

Diagram of N-channel JFET here

- (a) (6 points) When V_2 is more negative than a certain value V_{2sat} , the current I becomes constant with V_2 . Sketch the depletion region boundary around the p+ gate when V_2 is equal to V_{2sat} .
- (b) (8 points) With gate connected to terminal 2 and V_2 2sat in terms of the built in voltage of the p+/n junction **greek letter needed here**, the channel doping concentration (N_d), and the channel thickness (t).
- (c) (6 points) Sketch qualitatively I versus V_2 from 0 to V_{2sat} [note that V_2 is

Problem #3 (32 points total)

A symmetrical, uniformly doped npn bipolar transistor has the following structure:

Diagram of npn bipolar transistor

- (a) (10 points) In the forward active mode, calculate the forward gain beta sub F needed here
- (b) The transistor is biased by a constant current source with $I_B = 2mA$. Assume that the space-charge regions have negligible changes in width when I_B is applied and the space-charge region recombination/ generation currents are zero.

Different diagram of npn bipolar transistor

(i) (7 points) Sketch the excess minority carrier concentrations of the E, B, and C regions in the above figure.

- (ii) (5 points) Identify the operation mode of the transistor (forward active, reverse active, saturation, cut-off?). Briefly explain your answer.
- (iii) (10 points) Calculate the excess minority carrier concentrations at x_2 and x_4 .

Problem #4 SHORT QUESTIONS (30 points total)

(a) (10 points) You are given an intergrated-circuit bipolar transistor (npn or pnp) enclosed in a black box with three extended leads connected to the emitter, base, and collector. The three leads are labeled X,Y and Z. You only have the following measurement equipment: (1) an ammeter, and (2) a variable voltage source.

Diagram of black box here

- (i) Describe how you can find out which lead is connected to the **base** using I-V measurements. Whenever possible, use figures or sketches to explain your method.
- (ii) After you have identified the base terminal, describe how you can find out whether the transistor is npn or pnp.
- (b) (10 points) A p+/n junction has a constant built-in electric field E_0 (along +x direction) in the n-side quasi-neutral region. The juncion is forward biased.

Diagram of p±n junction here

- (i) Write down an expression for the hole current in the n-side in terms of the hole concentration p(x).
- (ii) In the figure above, sketch p(x).
- (c) (10 points) A p+/n long-base junction is forward biased with a current source I_F. At t=0, the current source is switched to zero.

Diagram of Current vs. Time

- (i) Derive the time-dependence of the stored excess minority carrier Q_p for t>0.
- (ii) Sketch qualitatively the time developments of $P_n'(x)$.

Posted by HKN (Electrical Engineering and Computer Science Honor Society)
University of California at Berkeley
If you have any questions about these online exams
please contact examfile@hkn.eecs.berkeley.edu.