- You may use one sheet (8.5" x 11") of your own notes. No other materials can be used. - There are two problems. | Name | SID# | | |------|------|--| | | | | | 1 | | |-------|--| | 2 | | | total | | Fig. 1: Current Mirror Op-Amp a) Suppose inputs v_{i_1} and v_{i_2} are grounded, i.e. $v_{i_1} = v_{i_2} = 0$. Determine the dc bias values for the following variables: (see next page) (You may neglect the r_o of all transistors for this.) Leave your results in symbolic form involving I_B , k'_p , k'_n , etc. | I_{D_1} | | |--------------|--| | I_{D_2} | | | I_{D_6} | | | I_{D_8} | | | ΔV_1 | | | ΔV_2 | | | ΔV_3 | | | ΔV_4 | | | ΔV_5 | | | ΔV_6 | | | ΔV_7 | | | ΔV_8 | | | ΔV_9 | | - (10) - e) Determine the differential mode circuit G_m , i.e. $$G_{m_{dm}} = \frac{i_{out}}{v_{i_d}} \bigg|_{v_{out}=0}$$; $v_{i_d} = v_{i_1} - v_{i_2}$ (10) f) Determine the common mode voltage gain: $$A_{v-cm} = \frac{v_o}{v_{i_{cm}}}$$ Fig. 2: Current Mirror In the current mirror of Fig. 2, all devices M1-M6 have identical $\frac{W}{L}$'s. (10) a) Assuming all devices are biased in the active region, determine the nominal bias values for the following. Leave your answers as expressions involving V_T 's, k', I_B , I_{ref} , $\frac{W}{L}$ etc.: | Iout | | |-----------|--| | V_{GS1} | | | V_{GS2} | | | V_{GS3} | | | V_{GS4} | | | V_{GS5} | | | V_{GS6} | | (10) b) Determine the minimum output voltage that keeps all devices in the active region. (10) c) Determine R_{out} for this circuit assuming all devices are active. Express your answer as a formula involving transistor small signal parameters like $g_{m_{1-6}}$, $r_{o_{1-6}}$, etc. (10) d) Briefly explain the purpose of M5 and M6 in this circuit.