University of California College of Engineering Department of Electrical Engineering and Computer sciences | EE140 | Midterr | n Exam | Mar. 13, 2003 | |---|--|--|-----------------------| | Name: | | SID#: | | | grad [| | undergrad | | | Closed book except for There are two problems. | 1 - 8.5" x 11" sheet of
Be sure to show all | your notes.
your work to receive fu | ll or partial credit. | | | 1 | | | | | 2 | | | | | Total | | | - 1) In the amplifier of Fig. 1, assume all NMOS devices have $V_T = V_{T_n}$, and all PMOS devices have $V_T = V_{T_p}$. You may neglect body effect. Further, assume all devices are minimum length, and are characterized by k'_n , λ_n and k'_p , λ_p for NMOS and PMOS devices respectively. - a) (10 pts.) For the nominal input $V_{i_1} = V_{i_2} = V_{DD}$, determine the circuit operating point. Fill in the data below in terms of symbolic parameters. V_{T_n} , V_{T_p} , k'_n , k'_p , λ_n , λ_p , I_B , $\left(\frac{W}{L}\right)$'s, etc. | I_{D_1} | | |-----------|--| | I_{D_2} | | | V_{S_1} | | | V_{S_2} | | | V_{D_3} | | | V_0 | | **b**) (10 pts.) Determine the common mode input range, consistent with keeping all devices active. **c)** (10 pts.) If $V_{i_2} = V_{DD}$, determine the output range, consistent with keeping all devices active. **d)** (10 pts.) For the operating point with $V_{I_1} = V_{I_2} = V_{DD}$, determine the differential mode circuit $$G_{\text{m}}$$, i.e. $G_{m_{diff}} = \frac{i_{out}}{(v_{i_1} - v_{i_2})}$. **e**) (10 pts.) For the operating point with $V_{i_1} = V_{i_2} = V_{DD}$, determine R_{out} . f) (10 pts.) (10 pts.) Determine the common mode gain, i.e. $A_{v-cm} = \frac{v_0}{v_{in}} \Big|_{v_{i_1} = v_{i_2} = v_{in}}$. 2) For the circuit of Fig. 2, take the following: $\left(\frac{W}{L}\right)_1 = N\left(\frac{W}{L}\right)_3$; $\left(\frac{W}{L}\right)_2 = N\left(\frac{W}{L}\right)_4$; $k'_n\left(\frac{W}{L}\right)_3 = k'_p\left(\frac{W}{L}\right)_4$. Neglect body effect and channel length modulation. Assume $V_{T_n} = V_{T_p}$. a) (10 pts.) For $V_i = 0$ and $R_L = \infty$, determine V_0 , I_{D_1} and I_{D_2} . | V_0 | | |-----------|--| | I_{D_1} | | | I_{D_2} | | b) (10 pts.) For the bias condition determined in part (a), determine the circuit $G_{\rm m}$. c) (10 pts.) For the bias condition determined in part (a), determine R_{out} . **d)** (10 pts.) Take $V_i = 0$ and $R_L = \infty$. Determine the large signal I_{out} - V_0 curve obtained by applying an appropriate test source at the circuit output.