EECS140 Midterm 2

Spring 2016

Prob.	Score
1	/10
2	/29
3	/16
4	/10
5	/15
Total	/80

Name			
SID			

- 1. For the op-amp below, assume that:
 - All transistors are biased in saturation
 - \bullet $\;$ All capacitors are assumed to be zero except $C_{\rm C},\,C_{\rm 2}$, and $C_{\rm gs}$ for all transistors.
 - $\bullet \quad g_{m}r_{o} >> 1 \text{ for all combinations of } g_{m} \text{ and } r_{o}$

The same op-amp will be used in several different feedback circuits.

a. [2] The spec requires that the output be able to swing to within 200mV of ground, and 150mV of the positive supply. List all constraints on overdrive voltages.

b.	[2] When used in feedback the closed-loop gain must be $5 + -1\%$.	What is the
	constraint on the open-loop gain of the amplifier?	

- c. [2] When used in feedback with a closed-loop gain of 5, the desired bandwidth is 200M rad/s. What is the constraint on the unity-gain bandwidth?
- d. The amplifier is also to be used in unity-gain feedback driving a 100pF load, and the desired open-loop phase margin is 70 degrees.
 - i. [2] What is minimum possible value for g_{m4} ? (answer should be in Siemens)
 - ii. [2] What are the constraints on g_{m1} and I_{tail} ? (in terms of other circuit values)
- 2. A particular design of the op-amp above has the following values for parameters. You may ignore the gain and phase associated with the current mirror for this problem.

G_{m1}	R _{o1}	G_{m2}	R _{o2}	C_2	$C_{\rm C}$	$C_{\sigma s4}$
1mS	1M	1mS	100k	100p	1p	0.1p

a. [6] What are the low-frequency gains, and the locations of the uncompensated (C_c =0) poles, uncompensated second-stage unity gain frequency, and right-half-plane zero associated with C_c ?

$ \mathbf{A}_{\mathbf{v}1.0} $	$ \mathbf{A}_{\mathbf{v2.0}} $	$\omega_{_{\mathrm{n}1}}$	ω_{n^2}	$\omega_{_{\mathrm{u}2}}$	$\omega_{_{z,\mathrm{RHP}}}$

On the following pages,

- b. [3] plot the magnitude of the second stage gain
- c. [6] plot the overall impedance seen at the first stage output,
- d. [2] plot the magnitude of the first stage gain,
- e. [6] plot the magnitude and phase of the overall gain. Label any poles and zeros clearly.
- f. [4] Estimate the unity-gain phase margin for this value of C_C . What value of feedback factor f gives a 45 degree phase margin?
- g. [2] Approximately what value of C_C is needed for a 45 degree phase margin if we can ignore $\omega_{z,RHP}$?

 2B) Second stage gain $-|A_{v2.0}|$

2E) op amp Bode plot

Label any poles and zeros clearly!

Don't forget RHP zero Don't forget to answer 2f and 2g (phase margin questions) 3. [16] For the four differential amplifiers below, assume that $1/g_m << R << r_o$ for all configurations, and that current sources are ideal. Calculate the transconductance G_m and the output resistance Ro for each amplifier. Assume a **purely differential input**.

	G_{m}	R _o
Amp A		
Amp B		
Amp C		
Amp D		

- [10] The audio amplifier circuit below consists of a two-stage op-amp with an output stage. The op-amp is wired up in feedback.
- a. Which transistors make up the input differential pair?
- b. Estimate the tail current in terms of circuit parameters.
- c. Which transistors make up the second stage?
- d. Which capacitor provides Miller compensation?
- e. What component minimizes the effect of the right-half-plane zero associated with Miller compensation?
- f. What is the DC bias voltage on the base of Q1?
- g. What is the low-frequency feedback factor, f_{DC} ? (you may ignore finite BJT input impedance)
- h. What is the mid-frequency feedback factor, $f_{\text{audio}}?$
- i. What RC time constant determines the transition from low-frequency to mid-frequency?

(source: eeweb.com/blog/circuit projects)

- 5. For the amplifier in the figure to the right
 - a. [4] Draw the small signal model labeling the small signal variables v_i , v_o , i_o , v_d

- b. [1] Write an expression for G_m as the ratio of two small signal parameters while a third is held equal to zero.
- c. [1] Write v_d in terms of i_o
- d. [4] Write KCL @ v_o and solve for G_m .

e. [3] Find the approximate value for G_m for each of three different values of R_D : much less than r_o , equal to r_o , and much greater than r_o .

f. [2] Write the full expression for R_o. (you don't need to derive it)