Midterm #1 Solutions – EECS 145L Fall 2001

1	Op Amp	Inverting op-amp circuit amplifier	Non-inverting op-amp circuit amplifier	4	Instrumentation amplifier
High Z _{in}	YES	NO	YES	NO	YES
Differential input	YES	NO	NO	YES	YES
Defined gain over a frequency band	NO	YES	YES	YES	YES

[1 point off for each wrong answer]

2a

Op-amp equation $V_0 = -AV_3$

Kirchhoff's current law at node
$$V_2$$
: $\frac{V_1 - V_2}{100 \, \text{k}\Omega} + \frac{V_3 - V_2}{1 \, \text{k}\Omega} + \frac{0 - V_2}{1 \, \text{k}\Omega} = 0$

$$V_1 = V_2 + 100V_2 - 100V_3 + 100V_2 = 201V_2 - 100V_3$$

Kirchhoff's current law at node V_3 : $\frac{V_2 - V_3}{1 \text{ k}_{\infty}^6} + \frac{V_0 - V_3}{100 \text{ k}_{\infty}^6} = 0$

$$100V_2 = 100V_3 + V_3 - V_0 = (101 + A)V_3$$

$$V_1 = \left[\frac{201(101+A)}{100} - 100\right]V_3 = \left[\frac{1030 \pm 201A}{100}\right]V_3$$

$$V_1 = \left[201 - \frac{100(100)}{101 + A}\right] V_2 = \left[\frac{1030 \pm 201A}{101 + A}\right] V_2$$

$$V_2 = \frac{(101 + A)V_1}{1030 \pm 201A} \approx \frac{1 + A/100}{100 + 2A} V_1$$

$$V_3 = \frac{100V_1}{1030 \pm 210A} \approx \frac{V_1}{100 + 2A} V_1$$

$$V_3 = \frac{100V_1}{1030 \pm 210A} \approx \frac{V_1}{100 + 2A}$$

$$V_0 = \frac{-100 \text{A} V_1}{1030 \pm 201 \text{A}} \approx \frac{-A V_1}{100 + 2A}$$

[7 points off for setting up the first three equations but not solving them]

[10 points off for following through with the erroneous starting equation $V_2 = V_1/101$]

2b

f = 10 Hz. $A = 10^5$

$$V_2 \approx V_1/201 \approx 5 \times 10^{-3} V_1$$
 $V_3 \approx 100 V_1/(201 \times 10^5) \approx 5 \times 10^{-6} V_1$ $V_0 \approx -0.5 V_1$

f = 1 MHz, A = 1

$$V_2 \approx 100 V_1 / 10000 \approx 10^{-2} V_1$$
 $V_3 \approx 100 V_1 / 10000 \approx 10^{-2} V_1$ $V_0 \approx -10^{-2} V_1$

[15 points off for determining As only]

[2 points off if some answers off by 2x]

To solve 2b without using 2a:

At 10 Hz, $A = 10^5$ is larger than the closed loop gain of 100 and the virtual short rule gives

$$V_2 = V_1 500 \ \Omega/100 \ k\Omega = 5 \ x \ 10^{-3} \ V_1$$
 $V_0 = -100 \ V_2 = -0.5 \ V_1$ $V_3 \approx -V_0/10^5 \approx 5 \ x \ 10^{-6} \ V_1$

At 1 MHz, A = 1, negative feedback fails, and the circuit gain is limited by the op-amp gain of -1 $V_0 = -V_3$

 $V_2 \approx V_3$ (voltage drop across 1 k Ω resistor is 1% of the 2V₃ voltage drop across 100 k Ω resistor)

$$V_2 = V_1 \ 1 \ k\Omega/100 \ k\Omega \approx 10^{-2} \ V_1$$
 $V_3 \approx 10^{-2} \ V_1$ $V_0 = -10^{-2} \ V_1$

S. Derenzo page 1

Midterm #1 Solutions – EECS 145L Fall 2001

The lower corner frequency is given by the RC time constant of the high-pass filter 3a $f_c = 1/(2 \pi RC) = 1/(2 \pi 0.16 \times 10^{-3}) \approx 1 \text{ kHz}$

[1 point off for 6.25 kHz]

The frequency where the gain of the buffer amplifier falls to 0.5 is the frequency where A falls to 1 which is 1 MHz. [2 MHz was also allowed].

[4 points off if LPF formula used to get 500 to 2000 Hz]

[5 points off if gain does not decrease as 1/f above 1 MHz]

[5 points off if gain does not increase as f below the f_c value answer in 3a]

4

[2 points off for overall sign error, e.g. $V_0 = -V_1 - V_2 + V_3 + V_4$]

[2 points off for a working circuit that uses three op amps]

[5 points off for using two differential amps to take $V_1 - V_3$ and $V_2 - V_4$ and then connecting the output directly together]

[5 points off for one summing amp plus two resistors connected to the + input of a buffer amp; this input is not a summing point]

[2 points off for the following circuit with resistor values shown because of the overall sign error, e.g. $V_0 =$ $-V_1 - V_2 + V_3 + V_4$

[4 points off for the following circuit with no resistor values shown]

page 2 S. Derenzo

Midterm #1 Solutions – EECS 145L Fall 2001

145L midterm #1 grade distribution:

Problem	
1	13.4 (15 max)
2	22.5 (40 max)
3	17.7 (25 max)
4	17.3 (20 max)

maximum score =	100	
average score =	70.9	
31-40	1	F
41-50	0	D
51-60	4	C
61-70	8	С-В
71-80	6	В
81-90	5	B-A
91-95	2	A
96-100	0	

page 3 S. Derenzo