Midterm #2 Solutions - EECS 145L Fall 2003

1a	Properties that differ	Pt resistance thermometer	<u>Thermocouple</u>
	material	metal	semiconductor
	R with increasing T	linear increase	exponential decrease
	maximum temperature	high (800 °C)	low (100 °C)
[full credit for 2 correct different properties; 2 points off for each missing entry]			missing entry]

1b	Properties that differ	Incandescent lamp	Fluorescent lamp
	temperature	hot (3000K filament)	cool
	mechanism	black body radiation	discrete energy change of electrons
	wavelength spectrum	broad	discrete lines
	energy efficiency	low	high

[full credit for 2 correct different properties; 2 points off for each missing entry]

1c	Properties that differ	PIN photodiode	Light Emitting Diode (LED)
	input	photons	current
	output	current	photons
	electronic transducer type	sensor	actuator

[full credit for 2 correct different properties; 2 points off for each missing entry]

2a

The proper bridge circuit has the p-type gauges in opposing positions and the n-type gauges in opposing positions. Note that compression makes $\Delta R/R < 0$ for the p-type gauges and $\Delta R/R > 0$ for the n-type gauges.

2b
$$V_{0} = \frac{R_{n}}{R_{p} + R_{n}} - \frac{R_{p}}{R_{p} + R_{n}} = \frac{(R + \Delta R_{n}) - (R + \Delta R_{p})}{2R + \Delta R_{p} + \Delta R_{n}}$$

$$V_{0} = \frac{\Delta R_{n} / R - \Delta R_{p} / R}{2 + \Delta R_{p} / R + \Delta R_{n} / R} = \frac{200\Delta L / L}{2 + 20,000(\Delta L / L)^{2}} = \frac{100\Delta L / L}{1 + 10,000(\Delta L / L)^{2}}$$

Midterm #2 Solutions – EECS 145L Fall 2003

[6 points off for not writing down the bridge equation]

[4 points off for writing down the bridge equation but not correctly deriving $V_0(\Delta L/L)$]

[3 points off for $V_0 = 100 \Delta L/L$]

- 2 c For $V_b = 1$ volt, bridge sensitivity is 0.1 mV per μ strain
- For $L/L = 10^{-3}$, $V_0 = 99$ mV, which is 1 mV (1% or 10 µstrain) lower than the straight line extrapolation.

[A correct answer would have to be consistent with the answer to 2b]

2 e $100 \text{ metric tons} = 10^8 \text{ g, which exerts a force of } 10^{11} \text{ dynes over } 10^4 \text{ cm}^2$ $F/A = 10^7 \text{ dynes/cm}^2$

 $\Delta L/L = (F/A)/E = 10^7 \text{ dynes/cm}^2 / 10^{11} \text{ dynes/cm}^2 = 10^{-4} = 100 \text{ }\mu\text{strain}$ With a sensitivity of 0.1 mV/ μ strain, $V_0 = 10 \text{ mV}$

Since the thermocouple has a sensitivity of 50 $\mu V/^{\circ}C$, we need a differential gain of 200 to get the required 10 mV/ $^{\circ}C$

Midterm #2 Solutions – EECS 145L Fall 2003

With a sensitivity of 1 μ A/K, a series resistor of 10 k Ω will give us the required 10 mV/K. A buffer amplifier prevents loading of the summing amplifier, but was not required for full credit.

[2 points off for using a 1 k Ω resistor]

[4 points off for a design that does not specify the sensitivity]

3c

The output $V_0 = V_a + V_b - 2.73 \text{ V}.$

As a check, consider the following situation: The sensing and the reference junction are both at 0 °C, so Va = 0.0 V. The solid state temperature sensor is at 273K and $V_b = 2.73V$. The above circuit produces $V_0 = 0.0 \text{ V}$, as desired.

[2 points off for omitting the 2.73 volt bias]

145L midterm #2 grade distribution:

		maximum score = 100		
		average score = 89.3 (8.8 rms)		(8.8 rms)
		30-39	0	F
Problem		40-49	0	D
1	25.3(3.0 rms) (30 max)	50-59	0	C-
2	35.8 (6.0 rms) (40 max)	60-69	1	C
3	28.2 (3.1 rms) (30 max)	70-79	2	В-
		80-89	6	В
		90-99	14	A
		100	1	A+