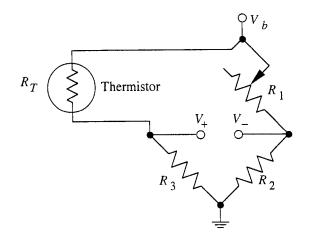
NAME (please print)		SID
---------------------	--	-----

UNIVERSITY OF CALIFORNIA, BERKELEY Electrical Engineering and Computer Sciences Department

EECS 145L Electronic Transducer Lab MIDTERM #2 (100 points maximum) November 22, 2004

(closed book, calculators OK, equation sheet provided)
(You will not receive full credit if you do not show your work)


PROBLEM 1	(20)	points)
-----------	------	---------

1a (10 points) What are the technical requirements of the ground fault interrupter circuit?

1b (10 points) Describe how the ground fault interrupter circuit functions to meet those requirements.

PROBLEM 2 (40 points)

You wish to measure air temperatures near 20°C using the thermistor bridge shown below.

Assume the following:

- $R_2 = R_3 = 10 \text{ k}\Omega.$
- You use an instrumentation amplifier with a gain of 5: $V_0 = 5 (V_+ V_-)$.
- The thermistor resistance R_T is 10.0 k Ω at 20 °C
- $dR_T/dT = -300 \Omega/^{\circ}C$ at 20 °C.

You then perform a series of experiments to explore the thermistor self-heating of your system.

Experiment 1: With $V_b = 1$ volt and the thermistor in water at 20°C, you adjust R_1 to make the amplifier output $V_0 = 0.000$ volts. (Assume that there is no self heating in water)

page 2

2a. (4 points) What are the values of R_1 and R_T ?

2b. (8 points) What electrical power is produced in the thermistor?

NAME (please print)	SID	
(I		

Experiment 2: You then move the thermistor to **air** at 20 °C, wait a while, and find that the amplifier output $V_0 = 0.05$ volts ($V_b = 1$ volt).

2c. (8 points) What is the thermistor resistance R_T ?

2d. (7 points) What is the temperature of the thermistor?

2e. (7 points) What electrical power is produced in the thermistor?

2f. (6 points) What is the thermal dissipation coefficient in W per C°?

NAME (please print)		SID
---------------------	--	-----

PROBLEM 3 (40 points)

Design a system that converts sound into light for transmission down an optical fiber and then converts the optical signal back into sound.

Assume the following

- You have a microphone that produces a maximum differential signal of 100 mV p-p (peak-to-peak) at the maximum sound intensity that you need to consider.
- 2. The microphone wires have 60 Hz electromagnetic pickup of pure 10 mV common mode (for simplicity assume zero differential 60 Hz pickup).
- 3. You have an light emitting diode (on one end of the optical fiber) that should produce 100 mA p-p when the microphone signal is at maximum.
- 4. You have a photodiode (on the other end of the optical fiber) that produces 1 mA p-p when the light emitting diode is producing its maximum signal (100 mA p-p input).
- 5. The loudspeaker should be driven at 10 V p-p when the microphone signal is at maximum. The speaker has an input impedance of 10Ω .
- 6. Each element in the system should be operated in a linear mode (output proportional to input).

In your design you should provide enough detail so that a skilled technician could be able to build it and understand how it works. Include all necessary components and label all signals with their maximum (p-p) amplitude. You may use any circuit components used in the laboratory exercises or discussed in lecture, but keep it simple.

17