- 1a A sensor converts a physical signal into an electrical signal
- The response curve of a sensor is the relationship between the physical input and the electrical output OR the output response after a step change in the input

[both were accepted]

- 1c The sensitivity of a sensor is the change in electrical output per change in physical input
 - [3 points off for ratio of output to input rather than ratio of changes]
 - [2 points off if neither ratio is the change in electrical output]
- 2 To calibrate a sensor
 - use the sensor on as many accurately known physical quantities as possible, spanning as much of the range as possible
 - Fit a smooth curve through the calibration points

[5 points off for adjusting the output level to insure agreement at one point]

3a Want a sensitivity of 0.1 V/K and a shift of -273K. Inverting amplifier sums (1 mV/K) T + 0.273 V and amplifies by a factor of -100.

- [3 points off for not converting °K to °C]
- [2 points off for a signal > 50V]
- [2 points off for s sensitivity $\geq 1 \text{V/K}$ or $\leq 0.01 \text{ V/K}$]

3b Mount to strain gauges on a membrane cemented to a vacuum tank. The external pressure will cause the membrane to stretch. Place the two resistive strain gauges in a bridge and connect the bridge to an instrumentation amplifier.

Bridge output is

$$V_{+} - V_{-} = V_{b} \left[\frac{R + \Delta R}{2R + \Delta R} - \frac{R}{2R + \Delta R} \right] = V_{b} \left[\frac{\Delta R}{2R + \Delta R} \right] \approx V_{b} \frac{\Delta R}{2R}$$

Strain is proportional to pressure: $\Delta L/L = kP$, where k depends on Young's modulus and the membrane geometry $\Delta R/R = 2\Delta L/L = 2kP$

Instrumentation amplifier output $V_0 = G(V_+ - V_-) = V_b \text{ kPG}$

Want to choose V_b $\bar{k}G = 0.1$ \bar{V}/mm Hg, so that $\Delta P = 100$ mm Hg gives $\Delta V_0 = 10$ V

Choose R so that $V_+ - V_- = 0$ at 700 mm Hg.

[The membrane is under tension on both sides. However, no points off for incorrectly assuming tension on one side, compression on the other side.]

- [3 points off for not using a bridge circuit]
- [3 points off for not describing what the technician should adjust to get the desired sensitivity of 0.1 V/mm Hg]
- [2 points off for $V_+ V_- = V_b \Delta R/(2R)$ and no other guidance to the technician]
- [2 points off for not mounting the strain gauges on a membrane]
- [1 points off for not providing a fixed pressure < 700 mmHg on one side of the membrane]

3c Attach the shaft of a circular resistor to a weathervane that rotates to point in the direction of the wind.

[3 points off for not tracking wind direction]

3d Attach four strain gauges to a flexible sheet and measure the force of the wind, similar to measuring the force of the weights in the strain lab. Connect the strain gauge in a bridge and connect the bridge output to an instrumentation amplifier with a gain G.

 $\Delta L/L$ = kW, where W is wind speed, and k depends on Young's modulus and the sheet geometry Bridge output is

$$V_{+} - V_{-} = V_{b} \left[\frac{R + \Delta R}{2R} - \frac{R - \Delta R}{2R} \right] = V_{b} \frac{\Delta R}{R}$$

Instrumentation amplifier output $V_0 = G (V_+ - V_-) = 2 V_b G k W$ Want to choose $V_b k G = 1 V per 40 km/hr$

- [2 points off for not tracking wind direction]
- [3 points off for not using a bridge circuit]
- [2 points off for not describing what the technician should adjust to get the desired sensitivity of 1 V per 20 km/hr]
- 1 points off for $V_+ V_- = V_b \Delta R/R$ and no other guidance to the technician
- [2 points off for not mounting the strain gauges on anything]

- **4b** During daylight the eight photovoltaic cells produce a maximum of 4.8 V across the BC coil, which activates the relay to connect A to E and charge the battery. R_1 is chosen so that during charging the voltage drop across it is only a few x 0.1 V.
- 4c At night the voltage across the BC coil is below 4 V because of the voltage drop across resistor R_1 , A is connected to D, which connects the battery to the voltage-controlled current driver circuit. The op-amp is powered by the battery and drives 100 mA through the LED. as desired.

Alternative accepted designs:

- (1) Use a diode in place of R_1 and a resistor $R_3 = R_2/3$ in place of the Zener diode.
- (2) Use one photovoltaic panel and an op-amp to drive inputs B and C of the relay and connect the battery (A) to the seven photovoltaic panels during daylight. At night the battery (A) powers to the LED circuit (D).
- [3 points off if the op-amp is not powered; in this problem op-amps have 5 leads, just like in the lab]
- [3 points off if relay not used to automatically switch between day and night modes]
- [2 points off if < 50 mA passes through the LED at night]
- [2 points off if photodiode panels are not connected in series to produce > 4 V]
- [3 points off if 4 V battery not used]
- [2 points off for incorrect LED circuit]
- [3 points off if LED is connected to 4V; the forward current will destroy the LED]
- [2 points off if 4 V battery, LED, and Zener diode are connected in series; this does not control the current at the desired value of 100 mA]

145L midterm #2 grade distribution:

143L initite in #2 grade distribution.				
		maximum score =	= 100	
		average score =	74.0 (11.3 rms)	
Problem		41-49	0	F
1	18.9 (2.2 rms) (20 max)	51-59	3	D
2	7.1 (2.8 rms) (10 max)	61-69	2	C
3	26.7 (6.6 rms) (40 max)	71-79	7	В
4	21.3 (3.8 rms) (30 max)	81-89	5	A
		91-99	1	A+
		100	0	
			GPA 2.9	