EECS145L, Fall 1999 (9/29/99) Midterm #1 Solutions Professor S. E. Derenzo

Problem #1

```
a)
The op-amp equation is V0 = A(V+ - V-)
If V0 is finite and A is infinite, then V+ = V- (virtual short rule)
V - = V + = V2R2/(R1+R2)
Since no current flows in or out of the op-amp inputs
(V+ - V1)/R1 + (V+ - V0)/R2 = [V+(R1 + R2) - V1R2 - V0R1]/R1R2 = (V2R2 - V1R2 - V1R2
(V2 - V1) / R1 = V0/R2
G[+or-] = V0/(V2 - V1) = R2/R1
```

To determine common mode gain, set V1 = V2 in the equation (V2 - V1)/R1 = V0/R2

Problem #2

```
4nV*Hz^{(-1/2)}*SQRT(Delta(f)) = 1.28x10^{(-10)}*OMEGA^{(-1/2)}*Hz^{(-1/2)}*SQRT(R*Delta(f))
SORT(R) = 40/1.29
R=961 Ohms
```

```
Problem #3
Differential gain 1000, bandwidth 10kHz
[3 points off for Gain = 10,000, bandwidth 1kHz]
b)
Output Vrms = (4nV*Hz^{(-1/2)})(100*Hz^{(-1/2)})(1000) = 0.4mV in 10kHz = noise to
[2 points off for 0.4 microV]
We want a Butterworth low-pass filter with a gain of 0.99 at 1kHz and 0.01 at 2
The order is 10 and the corner frequency is 1/0.823 = 1.22kHz. (order 12 also a
[5 points off for not giving corner frequency]
[2 points off for not specifying low pass]
[2 points off for order 8]
```

So the filtering reduce the output noise from [+or-]0.4mV to [+or-]0.14mV

After amplification and filtering, the output noise would be $Vrms = (4nV*Hz^{-1})$

d)

[4 points off if output noise not given]

```
The best way to reduce the 60Hz interference from the middle to a band of frequency [Any value between 0.1 and 2mV was accepted for full credit]
[3 points off for including one 10mV and not the other]
[6 points off if input noise not given]
[10 points off for using a HPF, which removes the important earthquake frequency
e)
Seismometer followed by a instr amp of gain 1000, followed by a notch filter (6)
```

145L midterm #1 grade distributions:

```
Problem
        32.5 (35 max)
1
        9.7 (10 max)
2
3
        47.3 (55 max)
maximum score = 100
average score = 89.4
66-77
71-75
76-80
       4 C
81-85
        1
86-90
       3 B
91-95
       4 B
96-100 6 A
```

Posted by HKN (Electrical Engineering and Computer Science Honor Society)
University of California at Berkeley
If you have any questions about these online exams
please contactexamfile@hkn.eecs.berkeley.edu.

Problem #3 2