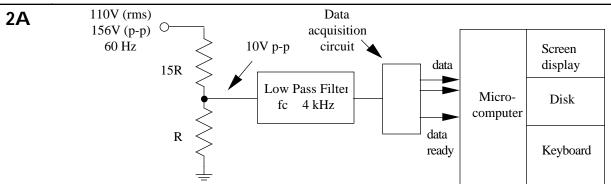
UNIVERSITY OF CALIFORNIA

College of Engineering Electrical Engineering and Computer Sciences Department

145M Microcomputer Interfacing Lab

Final Exam Solutions May 18, 1992

- **1A** Nyquist Theorem: To recover a waveform from its sampled values, the highest frequency present must \leq one-half the sampling frequency.
- **1B** Discrete Fourier Transform: Transform for determining the amplitude of the frequency components of a periodically sampled waveform.
- Differential Linearity Error (of an A/D converter): Difference between the spacing of neighboring transition voltages and their average spacing. [4 points off if step size or transition voltage not mentioned] [4 points off if absolute or relative accuracy was defined]
- **1D** Anti-Aliasing Filter: Low-pass filter used to block frequencies above one-half the sampling frequency and thereby prevent aliasing.
- **1E** Power Amplifier: Amplifier having high power or current output, and required to drive an actuator such as a speaker or heater. [2 points off if high power or current output not mentioned]
- **1F** Digital Filter: Filter whose output is a linear combination of previous input and output values.



[3 points off if 156 V p-p sent directly into acquisition circuit] [3 points off if low-pass filter omitted]

- **2B** $f = 0.01 \text{ Hz}, S = 1/f = 100 \text{ sec}, N = 100 \text{ sec } x 10 \text{ kHz} = 10^6 \text{ samples}$ (S = 50 sec, N = 5 x 10⁵ samples also acceptable)
- **2C** F_0 corresponds to 0 Hz or dc.
- **2D** 60 Hz corresponds to F_{6000} and F_{N-6000} where $N = 10^6$
- **2E** Since the distortion has a period of 60 Hz, only multiples of 60 Hz will be present.

The highest harmonic n_{max} that can pass the anti-aliasing filter is 5000 Hz/60Hz 80.

The nth harmonic will be at F_{6000n} and $F_{N-6000n}$

[3 points off if only frequencies given]

[6 points off if only F_{6000} and F_{N-6000} given]

[6 points off if answer says that all Fourier amplitudes are non-zero]

- **2F** 1) Data acquisition circuit samples waveform, digitizes, and sets data ready line
 - 2) When program detects data ready line, it reads data, stores data, and resets data ready line
 - 3) Loop back to step 1 until 10⁶ values taken
 - 4) Multiply values by Hanning window
 - 5) Compute the FFT
 - [2 points off for each step missing]

3A The first harmonic could be anywhere in the 59.9 to 60.1 Hz range, which corresponds to 20 potentially non-zero Fourier coefficients (40 filters) from F₅₉₉₀ to F₆₀₁₀.

The range of the 80th harmonic will involve $40 \times 80 = 3200$ filters.

The average number of filters per harmonic = 1600.

The total number of filters is then $1600 \times 80 = 128,000$ (much less than the total number of 500,000 real plus 500,000 imaginary components)

[4 points off for an answer of 2-5 filters]

[3 points off for answers of 10-40 filters or 10⁶ filters]

[2 points off for an answer from 3000 to 7000 filters]

[2 points off if the 59.9 to 60.1 Hz range was neglected]

3B The real FIR filter is given by

$$F_n = \int_{k=0}^{N-1} f_k \cos(2 nk/N)$$

The real IIR filter is given by

$$F_n(t + t) = |F_n(t) - f_0 + f_N| \cos(2 n/N)$$

where n = 100f and $N = 10^6$.

where n = 100f and $N = 10^6$.

[2 points off if frequency f missing]

- 3C 1 Take 10^6 samples (f₀ to f_{N-1}) and store in memory
 - 2 Compute all needed coefficients in a loop
 - 3 Start conversion and read new sample when ready
 - Delete oldest value (f_0), store new value (f_N) after last value (f_{N-1}), and shift all f_k to f_{k-1}
 - 5 Loop back to step 2

[3 points off for each missing step]

4A

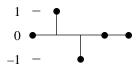
$$y_0 = 0$$
 $y_1 = 1$ $y_2 = -1$
 $y_3 = 0$ $y_4 = 0$

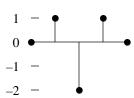
4B

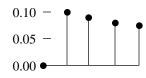
$$y_0 = 0$$
 $y_1 = 1$ $y_2 = -2$
 $y_2 = 1$ $y_4 = 0$

4C

$$y_0 = 0$$
 $y_1 = 0.100$ $y_2 = 0.091$
 $y_3 = 0.081$ $y_4 = 0.073$





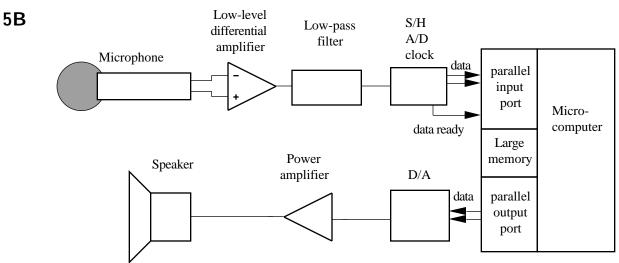


Second derivative — b

a — FIR

- 1 With an input impulse, sample the output waveform h(t) and perform the FFT.
- 2 Perform the FFT of the desired output y(t)
- 3 Compute the required input u(t) using

$$u(t) = FFT^{-1} \frac{FFT(y)}{FFT(h)}$$



[1 point off for each amplifier missing] [1 point off for missing low pass filter]

5C The digital filter is given by

$$y_i = (1 -)x_{i-1} + y_{i-1} = \exp(-T/RC)$$

where T is the cycle time (sampling x_{i-1} + computing y_i)

Gain vs. frequency is similar to the analog filter.

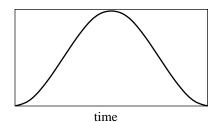
Phase is similar but shifted later by T.

[1 point off for exp(-1/RC)] [2 points off if processing delay omitted]

[3 points off if not related to RC]

The simple rectangular window allows a discontinuity between the ends of the sampled values.

To avoid this, need to multiply the time samples by a function that smoothly approaches zero at both ends:



145M Numerical Grades:

	6/9 x Lab	Lab Partic.	Midterm	Final	Total
Average	564	100	78	175	916 (B+)
rms	24	0	17	20	57
Maximum	600	100	100	200	1000

amplitude

145M Letter Grade Distribution

Letter Grade Course Totals (1000 max) 980*. 969 A+ 968, 965, 960, 957, 949* Α Anone B+ 929, 919, 913, 904, 903 891, 884 В Bnone C 840

753

* Graduate students

D