EECS 20. Midterm No. 1 October 7, 2004.

Use these sheets for your answer and your work. Use the backs if necessary. Write clearly and put a box around your answer, and show your work.

rint your name and lab day and time below
Jame:
ab day and time:
roblem 1:
roblem 2:
roblem 3:
roblem 4:
roblem 5:
otal:

1. **10 points** Let $[Nats_0 \rightarrow \{0,1\}]$ be the input and output signal spaces. Construct a machine whose input-output function is:

$$\forall x, \forall n, F(x)(n) = \left\{ \begin{array}{l} 0, \text{ if } (x(n-2), x(n)) = (1, 1), \\ 1, \text{ otherwise} \end{array} \right.$$

Note x(n-2) in specification of F.

2. 10 points. 2points for each part.

 (a) Using the notation [X → Y] for a signal space write down the signal space for: i. Voices, comprising all analog voice signals of duration 1 second.
 ii. SampledVoices, comprising the signals obtained by sampling analog voice 8,000 times per second.
iii. DigitalVoices, comprising sampled voice signals whose magnitude is represented by an 8-bit integer.
iv. <i>Texts</i> , comprising the set of all English sentences.
(b) A <i>VoiceRecognizer</i> is a system that converts digial voice into text. What is the range and domain of this system?

- 3. **30 points. 5 points for each part.** Indicate whether the following statements are true or false. There is no partial credit.
 - (a) Suppose P, Q, R are true assertions. Then

$$\neg [[\neg P \lor Q] \land [P \lor [R \land \neg P]]]$$
 is true

- (b) If set A has 4 elements, its power set P(A) has 4! = 24 elements.
- (c) The function $f:[0,1] \rightarrow [0,1]$ given by

$$\forall x, \quad f(x) = e^{-x}$$

has a unique fixed point.

- (d) If sets X and Y have m and n elements respectively, the set $[X \to Y]$ has $m \times n$ elements.
- (e) There is no deterministic state machine with $Inputs = Outputs = \{0, 1\}$ whose inputoutput function F is given by: for all input signals x, the output signal F(x) is

$$\forall n \in Nats_0, \quad F(x)(n) = x(n+1) \tag{1}$$

(f) There is a non-deterministic state machine with $Inputs = Outputs = \{0, 1\}$ whose *Behaviors* include (x, F(x)) for any input signal x, and F(x) given by (1).

4. **20 points. 10 points for each part.** Suppose A, B are non-deterministic state machines with *Inputs* and *Outputs* equal to $\{0, 1\}$,

 $A = (States_A, possibleUpdates_A, init_A)$

 $B = (States_B, possibleUpdates_B, init_B)$

Let C be the cascade composition of A and B.

C has the same *Inputs* and *Outputs* as A, B. Denote the other elements of C by

 $C = (States_C, possibleUpdates_C, init_C).$

(a) Express these in terms of the elements of A, B.

(b) For A, B given in the figure below

express C as a state diagram.

5. **20 points. 10 points each part.** M and N are machines with $Input = \{0,1\} \times \{a,b\}$ and $Outputs = \{a,b\}.$

Feedback composition

(a) Suppose a feedback connection is placed around M as shown above. Is the resulting composition well-formed? If it is, draw the transition diagram for the composite machine below.

(b) Repeat part 5a for N.

Use this page for overflow