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• (10 Points) Please print your name and lab time in legible, block lettering
above, and on the back of the last page.

• This exam should take you about two hours to complete. However, you will
be given up to about three hours to work on it. We recommend that you
budget your time as a function of the point allocation and difficulty level (for
you) of each problem or modular portion thereof.

• This exam printout consists of pages numbered 1 through 14. Also in-
cluded is a double-sided appendix sheet containing transform properties.
When you are prompted by the teaching staff to begin work, verify that your
copy of the exam is free of printing anomalies and contains all of the fourteen
numbered pages and the appendix. If you find a defect in your copy, notify
the staff immediately.

• This exam is closed book. Collaboration is not permitted. You may not
use or access, or cause to be used or accessed, any reference in print or elec-
tronic form at any time during the quiz. Computing, communication, and
other electronic devices (except dedicated timekeepers) must be turned off.
Noncompliance with these or other instructions from the teaching staff—
including, for example, commencing work prematurely or continuing beyond the
announced stop time—is a serious violation of the Code of Student Conduct.

• Please write neatly and legibly, because if we can’t read it, we can’t grade it.

• For each problem, limit your work to the space provided specifically for that
problem. No other work will be considered in grading your exam. No exceptions.

• Unless explicitly waived by the specific wording of a problem, to receive full
credit, you must explain your responses succinctly, but clearly and convinc-
ingly.

• We hope you do a fantastic job on this exam.

• It has been a pleasure having you in EECS 20N. Happy holidays!
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• Complex exponential Fourier series synthesis and analysis equations for a
periodic discrete-time signal having period p:

x(n) =
∑

k=〈p〉
Xk eikω0n ←→ Xk =

1

p

∑

n=〈p〉
x(n) e−ikω0n ,

where p = 2π
ω0

and 〈p〉 denotes a suitable contiguous discrete interval of length

p (for example,
∑

k=〈p〉
can denote

p−1∑

k=0

).

• Complex exponential Fourier series synthesis and analysis equations for a
periodic continuous-time signal having period p:

x(t) =
∞∑

k=−∞
Xk eikω0t ←→ Xk =

1

p

∫

〈p〉
x(t) e−ikω0tdt ,

where p = 2π
ω0

and 〈p〉 denotes a suitable continuous interval of length p (for

example,
∫

〈p〉
can denote

∫ p

0

).

• Discrete-time Fourier transform (DTFT) synthesis and analysis equations for
a discrete-time signal:

x(n) =
1

2π

∫

〈2π〉
X(ω)eiωndω ←→ X(ω) =

∞∑
n=−∞

x(n)e−iωn ,

where 〈2π〉 denotes a suitable continuous interval of length 2π (for example,∫

〈2π〉
can denote

∫ 2π

0

or
∫ π

−π

).

• Continuous-time Fourier transform (CTFT) synthesis and analysis equations
for a continuous-time signal:

x(t) =
1

2π

∫ ∞

−∞
X(ω)eiωtdω ←→ X(ω) =

∫ ∞

−∞
x(t)e−iωtdt .
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F05.1 (20 Points) Consider the finite-state machine composition shown below:

0 1

G
2
/1

G2/1

G
1
/0 G

1
/0

A

1

2

B

C

{react, absent}

Let the set D = {0, 1, absent} denote an alphabet. For every pair (x1(n), x2(n)) ∈
D2, x1(n) and x2(n) denote the top and bottom input symbols in the figure,
respectively. The nth output symbol y(n) ∈ D.

For each of the following guard sets G1, G2, and for each of the machines
B and C, determine whether the machine is well-formed (WF) or not well-
formed (NWF) by circling one choice (WF or NWF) in each entry of the table
below? No explanation will be considered. No partial credit will be given.

(I)

{
G1 = {(1, 0)}
G2 = {(0, 1)} (II)

{
G1 = {(0, 0), (1, 0)}
G2 = {(0, 1), (1, 1)}

(III)

{
G1 = {(1, 1)}
G2 = {(0, 0)} (IV )

{
G1 = {(0, 0), (1, 0)}
G2 = {}

Guard Set Machine B Machine C

(I) WF NWF WF NWF

(II) WF NWF WF NWF

(III) WF NWF WF NWF

(IV) WF NWF WF NWF

(I) C: No non-stuttering fixed point for ”react.” (II) B and C: More than one
non-stuttering fixed point. (III) B and C: No non-stuttering fixed point.
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F05.2 (40 Points) [N-Fold Upsampler] Consider a discrete-time system whose in-
put and output signals are denoted by x : Z→ R and y : Z→ R, respectively.
The output y is obtained by upsampling the input x by a factor of N , where
N ∈ {2, 3, . . .}. That is,

∀n ∈ Z, y(n) =

{
x

( n

N

)
if n mod N = 0

0 otherwise.

(a) Select the strongest assertion from the choices below. Explain your choice.
(I) The system must be time invariant.

(II) The system could be time invariant.
(III) The system cannot be time invariant.

If the input signal x is defined by sample values x(n) = δ(n), the corre-
sponding output signal y is y(n) = δ(n). Let x̂ denote the one-sample
delay of x, i.e., x̂(n) = x(n − 1) = δ(n − 1). Then the corresponding
output ŷ is characterized by ŷ(n) = δ(n−N) 6= y(n− 1) = δ(n− 1).

(b) Select the strongest assertion from the choices below. Explain your choice.
(I) The system must be causal.

(II) The system could be causal.
(III) The system cannot be causal.

The output y is such that y(−N) = x(−1), which means the system
peeks ahead in time.

(c) Select the strongest assertion from the choices below. Explain your choice.
(I) The system must be memoryless.

(II) The system could be memoryless.
(III) The system cannot be memoryless.

One approach takes advantage of the answer to part (b) by noting that
a noncausal system cannot be memoryless; this is the logical contra-
positive of the statement, ”every memoryless system must be causal.”
Another approach proceeds by constructing a counterexample. Let x be
defined such that x(0) = x(1) = 1. Then the output y is characterized
by y(0) = 1 6= y(1) = 0. Therefore, equal input sample values produce
different output sample values, which contradicts memorylessness.
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(d) Suppose the input signal x is periodic with fundamental frequency ω0 =
2π/p, where p denotes the period, and has the discrete Fourier series
(DFS) expansion

x(n) =
∑

k=〈p〉
Xk eikω0n .

(i) Determine the period p̂ and the corresponding fundamental fre-
quency ω̂0 of the periodic output signal y. Your answers must be
in terms of p and ω0.

p̂ = pN and ω̂0 =
2π

p̂
=

2π

pN
=

ω0

N
.

(ii) Determine the DFS coefficients Yk, k ∈ {0, 1, . . . , p̂ − 1}, in terms of
the DFS coefficients Xk of the input signal.
Note: You can approach this problem in more than one way. De-
pending on which method you use, you may or may not need the
following nuggets (δ denotes the Dirac delta function):

eiω0n DTFT←→ 2π
∞∑

r=−∞
δ(ω − ω0 + 2πr)

δ(α(µ− µ0)) =
1

|α|δ(µ− µ0) .

Yk =
1

pN

∑

n=〈bp〉
y(n) eikbω0n =

pN−1∑
n=0

y(n) eikbω0n, k = 0, 1, . . . , Np− 1.

Method 1: At most p of the pN terms above can be nonzero: for
samples y(n) where n mod N = 0 (i.e., n = 0, N, 2N, . . . , (p− 1)N ).

Yk =
1

pN

[
y(0) + y(N) eikbω0N + · · ·+ y((p− 1)N) eikbω0(p−1)N

]

=
1

N

{
1

p

[
x(0) + x(1) eikω0 + · · ·+ x(p− 1) eikω0(p−1)

]}

=
1

N
Xk, k = 0, 1, . . . , p− 1.

The complex exponentials are periodic in the index k, i.e., ei(k+mp)ω0 =
eikω0 ,∀m ∈ Z. Accordingly, the DFS coefficients Xk are periodic
in k, i.e., Xp = X0, Xp+1 = X1, . . . , Xk = Xk mod p. Therefore,

Yk =
1

N
Xk mod p, k = 0, 1, . . . , pN − 1. Method 2: Use the CTFT

impulse train expansion of periodic signals (e.g., see part (e)).
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(e) Suppose N = 2 and x(n) = cos
(

π
2
n
)
,∀n ∈ Z. Let w : Z → R denote the

impulse response of a discrete-time low-pass LTI filter, whose frequency
response is defined as follows:

∀ω ∈ R, W (ω) =

{
1 |ω| < π

2

0 elsewhere.

If the upsampled signal y is processed by the LTI filter to produce the
signal v : Z→ R, determine which of the following choices best charac-
terizes v (K 6= 0 denotes a real constant whose value is not of concern to
us here).
(I)

v(n) = K cos

(
3π

4
n

)
,∀n ∈ Z.

(II)
v(n) = K cos

(π

6
n
)

, ∀n ∈ Z.

(III)

v(n) = K cos
(π

4
n
)

, ∀n ∈ Z.

(IV)

v(n) = K cos

(
2π

3
n

)
,∀n ∈ Z.

Explain your reasoning succinctly, but clearly and convincingly.

Recall that the DTFTs of x and y are related, i.e., Y (ω) = X(ωN), ∀ω. Hence,

X(ω) = π

+∞∑
r=−∞

[
δ
(
ω − π

2
+ 2πr

)
+ δ

(
ω +

π

2
+ 2πr

)]
.

Y (ω) = X(ωN) = π

+∞∑
r=−∞

[
δ
(
ωN − π

2
+ 2πr

)
+ δ

(
ωN +

π

2
+ 2πr

)]

=
π

N

+∞∑
r=−∞

[
δ

(
ω − π

2N
+

2πr

N

)
+ δ

(
ω +

π

2N
+

2πr

N

)]
.

With N = 2, only the impulses at ±π/4 (corresponding to r = 0) pass through
the filter. Therefore, the output is a cosine of frequency π/4. You did not have
to write these expressions to get credit. You could have drawn X(ω) and
Y (ω), ensuring that you would show their respective 2π- and π-periodicities,
and identifying the impulses that would pass through the filter.
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F05.3 (30 Points) Consider a finite-length continuous-time signal x : R→ Rwhose
region of support is confined to the interval (−T, +T ), where T > 0. That is,
x(t) = 0, if |t| > T . Let X : R → C denote the continuous-time Fourier
transform (CTFT) of x, i.e.,

∀ω ∈ R, X(ω) =

∫ ∞

−∞
x(t) e−iωt dt .

Suppose the function X(ω) is modulated by the frequency-domain impulse
train S, where

S(ω) =
2π

Ts

∞∑

k=−∞
δ(ω − kωs) ,

where ωs = 2π/Ts. Let the resulting function be denoted by Y , where Y (ω) =
X(ω) S(ω). In effect, we are sampling the CTFT of x here.

(a) Determine y, the inverse Fourier transform of Y . Sketch a sample signal
x and show how y is related to x.
Impulse trains in the time and frequency domains are related by:

s(t) =
∞∑

k=−∞
δ(t− kTs)

F←→ S(ω) =
2π

Ts

∞∑

k=−∞
δ(ω − kωs) .

Based on the convolution property, (x ∗ s)(t)
F←→ X(ω) S(ω) , we know:

y(t) = (x ∗ s)(t) =
∞∑

k=−∞
x(t− kTs) .

(b) What condition(s) must x satisfy so that it is recoverable from this pro-
cess of frequency-domain sampling? That is, under what condition(s)
(imposed on x) can we recover x from y. Explain how y should be pro-
cessed to yield x.

To avoid temporal aliasing, it must be that Ts ≥ 2T , in which case x can be
recovered from y by windowing y using the window function w : R→ R, where
w(t) = 1 for |t| ≤ Ts/2 and w(t) = 0 otherwise. The figure above presumes
Ts ≥ 2T .
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F05.4 (40 Points) Consider a discrete-time signal x. Each part below discloses par-
tial information about x. Ultimately, your task is to determine x completely.

In the space provided for each part, state and explain every inference that
you can draw about x, synthesizing information disclosed, or your own in-
ferences drawn, up to, and including, that part. Justify all your work suc-
cinctly, but clearly and convincingly.

(a) The signal x coincides with, and is equal to, exactly one period of a real-
valued periodic signal x̃ : Z → R. It is known that the fundamental
frequency of x̃ is

ω0 =
2π

5
.

The periodic signal x̃ must have period p = 5, because ω0
4
=

2π

p
. There-

fore, x is a finite-length signal having at most five nonzero samples. We
also infer that x is real-valued, i.e., x(n) ∈ R, because x̃—with one pe-
riod of which x coincides and is equal to—is real-valued.

(b) The following is known about X , the discrete-time Fourier transform
(DTFT) of x:

(i) X(ω) ∈ R,∀ω ∈ R.
We infer that x must be conjugate symmetric in the time domain,
i.e., x(n) = x∗(−n), ∀n ∈ Z. From (a) we know that x is real-valued.
Therefore, it must be that x is an even function of n, i.e., x(n) =
x(−n). Therefore, x is a length-5 signal centered about n = 0, i.e.,
x(n) = 0, ∀|n| > 2. To determine the signal x completely, we must
solve for x(−2) = x(2), x(−1) = x(1), and x(0).

(ii) X(ω)|ω=0 =
3

2
. We infer that

X(0) =
∞∑

n=−∞
x(n) = x(0) + 2x(1) + 2x(2) =

3

2
.
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(iii) X(ω)|ω=π =
5

2
.

Noting that

X(π) =
∞∑

n=−∞
eiπn x(n) =

∞∑
n=−∞

(−1)n x(n),

we infer that
x(0)− 2x(1) + 2x(2) =

5

2
.

(iv)
∫ 2π

0

X(ω) dω = 2π.

The DTFT synthesis equation is

x(n) =
1

2π

∫ 2π

0

X(ω) eiωn dω .

We infer that

x(0) =
1

2π

∫ 2π

0

X(ω) dω = 1.

• Determine, and provide a well-labeled plot of, the signal x.
We now have three equations in three unknowns:





x(0) = 1

x(0) + 2x(1) + 2x(2) =
3

2

x(0)− 2x(1) + 2x(2) =
5

2

Solving these equations for the unknown signal sample values, we find
that x(0) = 1, x(1) = x(−1) = −1

4
, x(2) = x(−2) = 1

2
, and x(n) = 0,

elsewhere. The signal is plotted below:
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F05.5 (40 Points) A function f : R → C, which we call a ”mother wavelet,” has the
following properties:

1. f has zero average, i.e., ∫ ∞

−∞
f(t) dt = 0 .

2. f has finite energy, i.e.,

Ef
4
= ||f ||2 4

= 〈f, f〉 4=
∫ ∞

−∞
f(t) f ∗(t) dt =

∫ ∞

−∞
|f(t)|2 dt < ∞.

In fact, throughout this problem, assume, without loss of generality, that
f is normalized to have unit energy, i.e., Ef = 1.

Consider a family of ”offspring wavelets” (also called ”atoms”) obtained by
time-scaling and time-shifting f :

fα,τ (t) =
1√
α

f

(
t− τ

α

)
,

where α ∈ R+ (R+ denotes the set of positive real numbers) and τ ∈ R.

(a) Suppose the mother wavelet f denotes the impulse response of a linear,
time-invariant (LTI) filter. Select the strongest assertion from the choices
below. Explain your reasoning succinctly, but clearly and convincingly.
(I) f could represent a low-pass filter.

(II) f must represent a low-pass filter.
(III) f could represent a band-pass filter.

(IV) f must represent a band-pass filter.
(V) f could represent a high-pass filter.

(VI) f must represent a high-pass filter.
The DC response of the filter is: F (0) =

∫∞
−∞ f(t) dt = 0. Therefore, the

filter cannot be low-pass. Furthermore, we can write the energy of the
mother wavelet by using Parseval’s relation:

Ef =

∫ ∞

−∞
|f(t)|2 dt =

1

2π

∫ ∞

−∞
|F (ω)|2 dω .

Since Ef < ∞, it must be that |F (ω)| → 0 as |ω| → ∞, or else the
integral will not be finite. A frequency response F that vanishes to zero
as the frequency increases cannot be a high-pass filter. The inescapable
conclusion is that the filter must be band-pass.
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(b) Determine Fα,τ : R→ C, the continuous-time Fourier transform (CTFT)
of fα,τ . That is, determine an expression for

Fα,τ (ω)
4
=

∫ ∞

−∞
fα,τ (t) e−iωt dt =

1√
α

∫ ∞

−∞
f

(
t− τ

α

)
e−iωt dt .

Solving this problem involves a joint application of the time-shifting and
time-scaling properties of the CTFT. Let u = (t − τ)/α, so du = dt/α
(i.e., dt = α du) and t = αu + τ . Noting that the limits of the integral do
not change as we substitute variables (because α > 0), we can rewrite
the CTFT as follows:

Fα,τ (ω) =
1√
α

∫ ∞

−∞
f(u) e−iω(αu+τ) α du =

√
α

[∫ ∞

−∞
f(u) e−iαωu du

]

︸ ︷︷ ︸
F (αω)

e−iωτ ,

which leads to:
Fα,τ (ω) =

√
α F (αω) e−iωτ .

(c) Consider the Haar Family of wavelet functions, defined by:

f2m,n(t) =
1√
2m

f

(
t− 2mn

2m

)
, m, n ∈ Z .

The time-scale factor is denoted by m and the time-shift factor by n. In
what follows, assume n = 0.
The mother wavelet f corresponds to m = n = 0, i.e.,

f(t)
4
= f20,0(t) =





+1 0 ≤ t < 1
2

−1 1
2
≤ t < 1

0 elsewhere,

(i) Without complicated mathematical manipulation, determine the en-
ergy and the average of each Haar atom f2m,n. Apply the variable
substitution of part (b) to any general wavelet atom:

∫ ∞

−∞
fα,τ (t) dt =

1√
α

∫ ∞

−∞
f

(
t− τ

α

)
dt =

√
α

∫ ∞

−∞
f(u) du = 0 .

Similarly, the energy of every wavelet atom is:

Efα,τ =
1

α

∫ ∞

−∞

∣∣∣∣f
(

t− τ

α

)∣∣∣∣
2

dt =
α

α

∫ ∞

−∞
|f(u)|2 du = 1 .

The same holds for the Haar atoms.
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(ii) Plotted on the next page is a sketch of the Haar mother wavelet f .
In the other spaces, provide well-labeled plots of the unshifted Haar
wavelet atoms characterized by m = −1, +1, 2, respectively.

(iii) Explain why the Haar wavelets {f2m,0}m∈Z are mutually orthogonal,
i.e.,

〈f2m,0, f2k,0〉 4=
∫ ∞

−∞
f2m,0(t) f ∗2k,0(t) dt = δ(k −m).

We are not looking for a rigorous mathematical proof here. You
should be able to infer mutual orthogonality by observing features
of the plots that you drew above and exploiting one of the salient
properties of f given in the problem statement.

Consider the Haar wavelets corresponding to m = −1 and m =
0 (recall that, according to the problem statement, n = 0 for our
purposes). Then the inner-product of f2−1,0 and f20,0 is:

〈f2−1,0, f20,0〉 =

∫ 1/2

0

f2−1,0(t) f ∗20,0(t)︸ ︷︷ ︸
=1

dt =

∫ 1/2

0

f2−1,0(t) dt.

From the corresponding plots of part (c)(ii), we note that f20,0 is con-
stant over the region of support of f2−1,0. Hence, 〈f2−1,0, f20,0〉 is
proportional to the average of f2−1,0; from part (c)(i), we know that
the average of each Haar wavelet is zero. The same argument holds
for the inner-product of any other pair of Haar wavelets, i.e.,

〈f2m,0, f2k,0〉 = 0,

if k 6= m. That is, if m > k, then f2m,0 is constant over the region
of support of f2k,0, and vice versa. Furthermore, we showed in part
(c)(i) that each Haar wavelet has unit energy, that is:

〈f2m,0, f2m,0〉 = Ef2m,0
= 1.

Therefore, the Haar wavelets (mother and atoms) form a mutually
orthonormal set of functions, i.e.,

〈f2m,0, f2k,0〉 = δ(k −m),

where δ denotes the Kronecker delta function.
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Lab Time 365/24/7

Problem Points Your Score
Name 10 10

1 20 20

2 40 40

3 30 30

4 40 40

5 40 40
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