EECS 20. Midterm No. 2 April 5, 2000.

Please use these sheets for your answer. Use the backs if necessary. Write clearly and put a box around your answer, and show your work.

Print your name and lab time below

Name:		
Lab time:		
Problem 1:		
Problem 2:		
Problem 3:		
Problem 4:		
Total:		

1. **40 points.** Suppose that a continuous-time LTI system S has the frequency response H shown in the following plots:

Suppose further that the input is

$$x(t) = 1 + \sin(t) + \cos(2t).$$

(a) Find the fundamental frequency and the Fourier series coefficients A_k and ϕ_k for the input.

(b) Find the output y.

(c) Suppose that a new system is constructed by cascading two copies of S as shown below:

Give the frequency response $G(\omega)$, the magnitude response $|G(\omega)|$, and the phase response $\angle G(\omega)$ of the cascade composition $S \circ S$ in terms of the frequency response H of S, and give a sketch.

(d) Find the output of the cascade composition for the same input x.

2. **20 points.** Consider a discrete-time LTI system S whose response to the unit step input u is

$$y(n) = \delta(n) + \delta(n-1) + \delta(n-2) + \delta(n-3),$$

where δ is the Kronecker delta function. Recall that the unit step is $u: Ints \to Reals$ such that for all $n \in Ints$,

$$u(n) = \begin{cases} 1, & n \ge 0 \\ 0, & \text{otherwise} \end{cases}$$

and the Kronecker delta function is δ : Ints \to Reals such that for all $n \in$ Ints,

$$\delta(n) = \begin{cases} 1, & n = 0 \\ 0, & \text{otherwise} \end{cases}$$

- (a) Sketch u, δ , and y.
- (b) Find the impulse response h of S (i.e., the output when the input is δ). Give both a formula and a sketch.

3. 30 points Consider the continuous-time signal

$$x(t) = \cos^2(\pi t/6) + \sin(\pi t/6).$$

- (a) Express this as a sum of cosines with frequencies that are integer multiples of $\pi/6$, with suitably chosen phases.
- (b) Find the fundamental frequency ω_0 of x and give the Fourier series coefficients A_k and ϕ_k .
- (c) Find the Fourier series coefficients X_k in the Fourier series expansion

$$x(t) = \sum_{k=-\infty}^{\infty} X_k e^{ik\omega_0 t}.$$

4. **20 points** Suppose that a discrete-time system S has input $x:Ints \rightarrow Reals$ and output $y:Ints \rightarrow Reals$ that satisfy the difference equation

$$\forall n \in Ints, \quad y(n) = x(n) - 0.9y(n-1).$$

- (a) Construct a state-machine model for this system. I.e., give the parameters for the state update and output equations. **Hint:** Begin by defining the state s(n). You will lose credit for choosing a state with more dimensions than necessary.
- (b) Find the zero-state impulse response of this system. Give an expression and a well-labeled sketch.

Use this page for overflow