
EECS 20. Midterm No. 2 April 9, 2004.

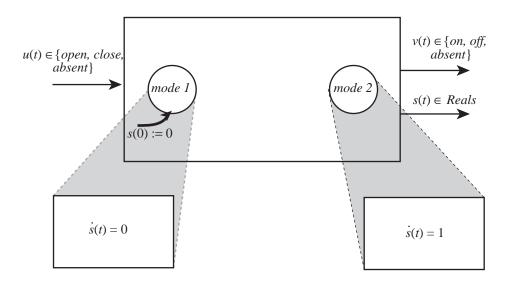
Please use these sheets for your answer and your work. Use the backs if necessary. Write clearly and put a box around your answer, and show your work.

Print your name and lab day and time below

Name:		
Lab time:		
Problem 1:		
Problem 2:		
Problem 3:		
Problem 4:		
Problem 5:		
Total:		

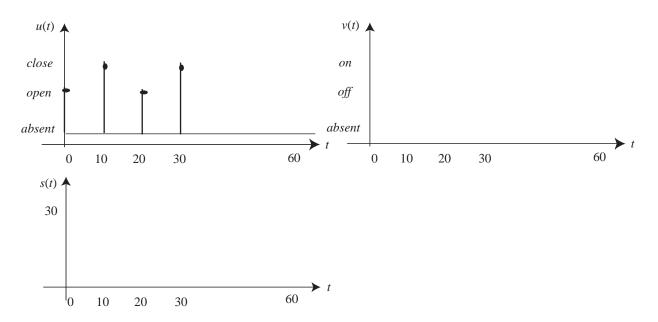
1. **20 points** The block diagram of a feedback composition of a discrete-time system is given below:

The state s, input signal x, and output signal y are related by the update equation:


$$s(n+1) = s(n) + x(n)$$
$$y(n) = s(n)$$

(a) 6 points Find the zero-state impulse response of this system.

(b) **6 points** Find the update equation for the feedback system with input signal r, output signal y and state s.


(c) **8 points** Find the zero-state impulse response for the feedback composition, when the 'gain' k=-0.5

2. **20 points** The figure below is a partial hybrid system description of the dome light controller of an automobile.

When someone opens the door (u(t) = open), the light is turned on (v(t) = on). After the door is closed (u(t) = close) for 30 seconds, the light is turned off (v(t) = off). Note that the door must be closed for the entire 30 seconds, before the light is turned off.

- (a) **10 points** Design the transitions (including guard, action, and output) so that the system meets this specification.
- (b) 10 points Plot the output signal v(t) and the trajectory of the refinement state s(t), $0 \le t \le 60$, when the input signal u is as shown below.

3. **15 points** The continuous-time signal x is given by (t is in seconds)

$$\forall t \in R, \quad x(t) = \cos(2\pi \times 60 + \pi/4) + 2\cos(2\pi \times 120 + \pi/8) + 3\cos(2\pi \times 180 + \pi/12).$$

(a) **5 points** Is x periodic? If it is, what is its period?

(b) 10 points The signal x is input to a LTI system whose frequency response is

$$\forall \omega \in R, \quad H(\omega) = \left\{ \begin{array}{ll} 1, & |\omega| < 2\pi \times 150, \\ 0.5, & \text{otherwise} \end{array} \right.$$

What is the output signal y? Is y periodic? If it is, what is its period?

4. **25 points** A LTI system with input signal x and output signal y is described by the differential equation

$$\frac{dy}{dt} + 0.5y(t) = x(t), \quad t \in R.$$

(a) 10 points Suppose the input signal is $\forall t, x(t) = e^{i\omega t}$, where ω is fixed. What is the output signal y?

(b) 5 points What is the frequency response,

$$\forall \omega \in R, \quad H(\omega) =$$

(c) 10 points What is the magnitude and phase of the frequency response for $\omega=0.5$ rad/sec?

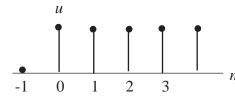
$$|H(0.5)| =$$

$$\angle H(0.5) =$$

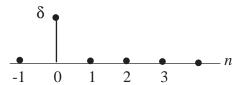
5. **20 points**

- (a) 10 points Consider a continuous-time system $S:[R \to R] \to [R \to R]$
 - i. Suppose

$$\forall x, \forall t, \quad S(x)(t) = x(t-2).$$


Is S time-invariant? Why?

ii. Suppose


$$\forall x, \forall t, \quad S(x)(t) = x(2t).$$

Is S time-invariant? Why?

(b) A discrete-time linear system produces output v when the input is the step u. What is the output h when the input is the impulse δ ?

Use this page for overflow