EECS 20N: Structure and Interpretation of Signals and Systems

Department of Electrical Engineering and Computer Sciences

7 May 2009

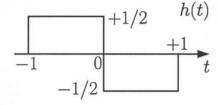
UNIVERSITY OF CALIFORNIA BERKELEY

LAST Name _	Konvol	FIRST Name _	Sirkule	
		Lab Time	?	

- (10 Points) Print your name and lab time in legible, block lettering above AND on the last page where the grading table appears.
- This exam should take up to 70 minutes to complete. You will be given at least 70 minutes, up to a maximum of 80 minutes, to work on the exam.
- This exam is closed book. Collaboration is not permitted. You may not use or access, or cause to be used or accessed, any reference in print or electronic form at any time during the exam, except three double-sided 8.5" × 11" sheet of handwritten notes having no appendage. Computing, communication, and other electronic devices (except dedicated timekeepers) must be turned off. Noncompliance with these or other instructions from the teaching staff—including, for example, commencing work prematurely or continuing beyond the announced stop time—is a serious violation of the Code of Student Conduct. Scratch paper will be provided to you; ask for more if you run out. You may not use your own scratch paper.
- The exam printout consists of pages numbered 1 through 8. When you are
 prompted by the teaching staff to begin work, verify that your copy of the
 exam is free of printing anomalies and contains all of the eight numbered
 pages. If you find a defect in your copy, notify the staff immediately.
- Please write neatly and legibly, because if we can't read it, we can't grade it.
- For each problem, limit your work to the space provided specifically for that problem. *No other work will be considered in grading your exam. No exceptions.*
- Unless explicitly waived by the specific wording of a problem, you must explain your responses (and reasoning) succinctly, but clearly and convincingly.
- We hope you do a fantastic job on this exam.

MT3.1 (45 Points) A continuous-time LTI filter H has input x and output y.

The figure below shows the nonzero portion of the filter's impulse response h.



(a) Let $H(\omega)$ denote the frequency response of the filter.

Determine a reasonably simple expression for $H(\omega)$, and provide well-labeled plots of the filter's magnitude response $|H(\omega)|$ and phase response $\angle H(\omega)$.

You may find it useful to know that

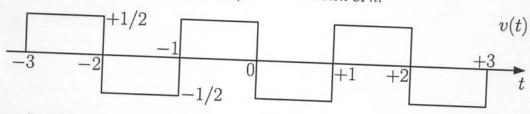
$$\frac{2\sin^2\alpha = 1 - \cos 2\alpha}{1 + \cos 2\alpha}$$

$$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}$$

(b) Suppose the input signal
$$x$$
 satisfies the constraint $x(t+1) = x(t)$, for all t .

Method 1:
$$x(t+1)=x(t) \implies x$$
 is periodic of period $p=1 \implies w_{0x} = \frac{x\pi}{p} = 2\pi \implies x(t) = \sum_{k=-\infty}^{\infty} X_k e^{ikw_{0x}t} = \sum_{k=-\infty}^{\infty} X_k e^{ikw_{0x}t} \implies y(t) = \sum_{k=-\infty}^{\infty} X_k + (2\pi k)e^{ik\pi kt} \implies y(t) = 0$
 $\forall k \in \mathbb{Z}$

Method 2: Convolving x with h involves subtracting one whole period of x from an adjacent whole (c) The signal v shown below is a periodic extension of h.



In this case, we can express v as follows:

$$\forall t, \quad v(t) = \sum_{m=-\infty}^{+\infty} h(t-2m).$$

Determine $V(\omega)$, the continuous-time Fourier transform of the signal v.

Method 1: Think of v as the convolution of h with a periodic impulse train:

$$(t)$$
 (t)
 (t)

MT3.2 (45 Points) Consider a continuous-time periodic signal g having fundamental period T_0 . Let g have the complex exponential Fourier series expansion

$$g(t) = \sum_{k=-\infty}^{+\infty} G_k e^{ik\omega_0 t},$$

where $\omega_0 = 2\pi/T_0$ is the fundamental frequency of g.

Construct a discrete-time signal h by sampling g every T_s seconds. That is,

$$h(n) = g(nT_s),$$

where T_s is the sampling period (and $\omega_s = 2\pi/T_s$ is the sampling frequency).

(a) Suppose the discrete-time signal h is periodic. In particular, h(n + N) = h(n) for all n; the positive integer N is the *fundamental* period of h.

Determine the relationship that must exist between T_0 and T_s so that h is periodic with fundamental period N.

Determine, too—in terms of T_0 and N—the smallest value that the sampling period T_s can have.

(b) If the discrete-time signal h is periodic with fundamental period N (and fundamental frequency $\Omega_0 = 2\pi/N$), then it must have a DSF expansion

$$h(n) = \sum_{\ell = \langle N \rangle} H_{\ell} \, e^{i\ell\Omega_0 n}.$$

Express the coefficients H_{ℓ} in terms of the coefficients G_k .

Express the coefficients
$$H_{\ell}$$
 in terms of the coefficients G_{k} .

$$h(n) = g(nT_{S}) = \sum_{k=-\infty}^{\infty} G_{k} e^{ik\omega_{0}t} = \sum_{k=-\infty}^{\infty} G_{k} e^{ik\Omega_{0}n}, \text{ where } S_{0} = \omega T_{0} = \omega T_{0}$$

Determine the smallest appropriate value of the sampling period T_s.

(ii) Express the constant C in terms of g(t). Also, express C in terms of the Fourier series coefficients G_k ?

$$C = g(nT_s) = g(0) \implies C = g(0)$$
But $g(t) = \sum_{k=-\infty}^{\infty} G_k e^{ik\omega_s t} \implies g(0) = \sum_{k=-\infty}^{\infty} G_k \implies C = \sum_{k=-\infty}^{\infty} G_k$

MT3.3 (15 Points) [**Modulation Property of the DTFT**] Consider two signals *f* and *g*, each of which has a well-defined discrete-time Fourier transform (DTFT):

$$f(n) \stackrel{\mathcal{F}}{\longleftrightarrow} F(\omega)$$
 , $g(n) \stackrel{\mathcal{F}}{\longleftrightarrow} G(\omega)$

We construct a third signal h by multiplying f and g pointwise (i.e., by modulating f with g, or vice versa). That is,

$$h(n) = f(n) g(n)$$
 for all n .

Prove that $H(\omega)$, the DTFT of h, is given by

$$H(\omega) = \frac{1}{2\pi} \int_{\langle 2\pi \rangle} F(\lambda) G(\omega - \lambda) d\lambda \stackrel{\triangle}{=} \frac{1}{2\pi} (F \circledast G) (\omega). \tag{1}$$

The integral on the right-hand side of Equation 1 is called the *circular convolution* or *periodic convolution* of F and G. Essentially, you're asked to show that

$$h(n) = f(n) g(n) \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad \frac{1}{2\pi} (F \circledast G) (\omega).$$

You may use this page for scratch work only. Without exception, subject matter on this page will *not* be graded.

LAST Name	Konvol	FIRST Name	Sirkule	
		Lab Time	?	

Problem	Points	Your Score
Name	10	10
1	45	45
2	45	45
3	15	15
Total	115	115